Skip to main content
Log in

Supramolecular assemblies of lignin into nano- and microparticles

  • System Integration of Functionalized Natural Materials
  • Published:
MRS Bulletin Aims and scope Submit manuscript

Abstract

Among the most abundant biopolymers in the biosphere, lignin represents an untapped opportunity to create novel bioproducts. In this article, we discuss possibilities to synthesize nano- and microparticles by harnessing lignin’s inherent tendency to associate and to develop new material compositions and functions by controlling its capacity to assemble into supramolecular structures. Because lignin is biodegradable, antimicrobial, antioxidative, and carbon neutral, inexpensive industrial lignin streams could generate value-added particulate materials that preserve the structure, composition, and colloidal features inherent to this macromolecule. We present available routes for synthesis or isolation of lignin particles, including antisolvent and aerosol processing. Metallic and polymeric lignin particle hybrids for magnetic, antibacterial, catalytic, photonic, and other applications are also discussed. Overall, the facile formation of nano- and microparticles from lignins is expected to open new pathways toward future material development.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. J.K. Weng, C. Chapple, New Phytol. 187, 273 (2010).

    Google Scholar 

  2. E.N. Uzal, L.V. Gómez Ros, F. Pomar, M.A. Bernal, A. Paradela, J.P. Albar, A. Ros Barceló, Physiol. Plant. 135, 196 (2009).

    Google Scholar 

  3. A. Toledano, A. García, I. Mondragon, J. Labidi, Sep. Purif. Technol. 71, 38 (2010).

    Google Scholar 

  4. W.O. Doherty, P. Mousavioun, C.M. Fellows, Ind. Crops Prod. 33, 259 (2011).

    Google Scholar 

  5. M. Norgren, H. Edlund, Curr. Opin. Colloid Interface Sci. 19, 409 (2014).

    Google Scholar 

  6. V. Mendu, A.E. Harman-Ware, M. Crocker, J. Jae, J. Stork, S. Morton, A. Placido, G. Huber, S. DeBolt, Biotechnol. Biofuels 4, 1 (2011).

    Google Scholar 

  7. V. Mendu, T. Shearin, J.E. Campbell, J. Stork, J. Jae, M. Crocker, G. Huber, S. DeBolt, Proc. Natl. Acad. Sci. U.S.A. 109, 4014 (2012).

    Google Scholar 

  8. C. Culbertson, T. Treasure, R. Venditti, H. Jameel, R. Gonzalez, Nord. Pulp Pap. Res. J. 31, 30 (2016).

    Google Scholar 

  9. S. Laurichesse, L. Avérous, Prog. Polym. Sci. 39, 1266 (2014).

    Google Scholar 

  10. M.P. Pandey, C.S. Kim, Chem. Eng. Technol. 34, 29 (2011).

    Google Scholar 

  11. V.K. Thakur, M.K. Thakur, Int. J. Biol. Macromol. 72, 834 (2015).

    Google Scholar 

  12. W. Stark, P. Stoessel, W. Wohlleben, A. Hafner, Chem. Soc. Rev. 44, 5793 (2015).

    Google Scholar 

  13. J.P. Rao, K.E. Geckeler, Prog. Polym. Sci. 36, 887 (2011).

    Google Scholar 

  14. J. Guo, B.L. Tardy, A.J. Christofferson, Y. Dai, J.J. Richardson, W. Zhu, M. Hu, Y. Ju, J. Cui, R.R. Dagastine, I. Yarovsky, F. Caruso, Nat. Nanotechnol. 11, 1105 (2016).

    Google Scholar 

  15. E. Campos, J. Branquinho, A.S. Carreira, A. Carvalho, P. Coimbra, P. Ferreira, M. Gil, Eur. Polym. J. 49, 2005 (2013).

    Google Scholar 

  16. M. Zeng, E. Ximenes, M.R. Ladisch, N.S. Mosier, W. Vermerris, C.P. Huang, D.M. Sherman, Biotechnol. Bioeng. 109, 390 (2012).

    Google Scholar 

  17. M. Zeng, E. Ximenes, M.R. Ladisch, N.S. Mosier, W. Vermerris, C.P. Huang, D.M. Sherman, Biotechnol. Bioeng. 109, 398 (2012).

    Google Scholar 

  18. L.-P. Xiao, Z.-J. Sun, Z.-J. Shi, F. Xu, R.-C. Sun, BioResources 6, 1576 (2011).

    Google Scholar 

  19. F. Araya, E. Troncoso, R.T. Mendonça, J. Freer, Biotechnol. Bioeng. 112, 1783 (2015).

    Google Scholar 

  20. F. Araya, E. Tronscoso, R.T. Mendonca, J. Freer, J. Rencoret, J.C. Del Rio, J. Chil. Chem. Soc. 60, 2954 (2015).

    Google Scholar 

  21. B.S. Donohoe, S.R. Decker, M.P. Tucker, M.E. Himmel, T.B. Vinzant, Biotechnol. Bioeng. 101, 913 (2008).

    Google Scholar 

  22. R.D.P. Castillo, J. Araya, E. Troncoso, S. Vinet, J. Freer, Anal. Chim. Acta 866, 10 (2015).

    Google Scholar 

  23. P. Sannigrahi, D.H. Kim, S. Jung, A. Ragauskas, Energy Environ. Sci. 4, 1306 (2011).

    Google Scholar 

  24. T. You, L. Zhang, S. Guo, L. Shao, F. Xu, J. Agric. Food Chem. 63, 10747 (2015).

    Google Scholar 

  25. W. Wang, X. Zhuang, Z. Yuan, W. Qi, Q. Yu, Q. Wang, Biomed Res. Int. 2016, 7 (2016).

    Google Scholar 

  26. H. Li, Y. Pu, R. Kumar, A.J. Ragauskas, C.E. Wyman, Biotechnol. Bioeng. 111, 485 (2014).

    Google Scholar 

  27. Z. Ji, X. Zhang, Z. Ling, X. Zhou, S. Ramaswamy, F. Xu, Biotechnol. Biofuels 8, 1 (2015).

    Google Scholar 

  28. M.J. Selig, S. Viamajala, S.R. Decker, M.P. Tucker, M.E. Himmel, T.B. Vinzant, Biotechnol. Prog. 23, 1333 (2007).

    Google Scholar 

  29. M. Norgren, H. Edlund, L. Wågberg, Langmuir 18, 2859 (2002).

    Google Scholar 

  30. A. Guerra, A.R. Gaspar, S. Contreras, L.A. Lucia, C. Crestini, D.S. Argyropoulos, Phytochemistry 68, 2570 (2007).

    Google Scholar 

  31. M. Mi č i č, M. Jeremi č, K. Radoti č, M. Mavers, R.M. Leblanc, Scanning 22, 288 (2000).

    Google Scholar 

  32. Y. Qian, Y. Deng, X. Qiu, H. Li, D. Yang, Green Chem. 16, 2156 (2014).

    Google Scholar 

  33. C. Frangville, M. Rutkevi č ius, A.P. Richter, O.D. Velev, S.D. Stoyanov, V.N. Paunov, ChemPhysChem 13, 4235 (2012).

    Google Scholar 

  34. M. Lievonen, J.J. Valle-Delgado, M.-L. Mattinen, E.-L. Hult, K. Lintinen, M.A. Kostiainen, A. Paananen, G.R. Szilvay, H. Setälä, M. Österberg, Green Chem. 18, 1416 (2016).

    Google Scholar 

  35. S. Sarkanen, D.C. Teller, C.R. Stevens, J.L. McCarthy, Macromolecules 17, 2588 (1984).

    Google Scholar 

  36. Z. Wei, Y. Yang, R. Yang, C. Wang, Green Chem. 14, 3230 (2012).

    Google Scholar 

  37. W.K. El-Zawawy, M.M. Ibrahim, M.N. Belgacem, A. Dufresne, Mater. Chem. Phys. 131, 348 (2011).

    Google Scholar 

  38. Y.L. Moreva, N. Alekseeva, Y.M. Chernoberezhskii, Russ. J. Appl. Chem. 83, 1281 (2010).

    Google Scholar 

  39. M. Kannangara, M. Marinova, L. Fradette, J. Paris, Chem. Eng. Res. Des. 105, 94 (2016).

    Google Scholar 

  40. I.A. Gilca, V.I. Popa, C. Crestini, Ultrason. Sonochem. 23, 369 (2015).

    Google Scholar 

  41. S.S. Nair, S. Sharma, Y. Pu, Q. Sun, S. Pan, J.Y. Zhu, Y. Deng, A.J. Ragauskas, ChemSusChem 7, 3513 (2014).

    Google Scholar 

  42. I.A. Gilca, R.E. Ghitescu, A.C. Puitel, V.I. Popa, Iran. Polym. J. 23, 355 (2014).

    Google Scholar 

  43. I.-A. Gîlc ă, V.I. Popa, Cell. Chem. Technol. 47, 239 (2013).

    Google Scholar 

  44. K.S. Silmore, C. Gupta, N.R. Washburn, J. Colloid Interface Sci. 466, 91 (2016).

    Google Scholar 

  45. Y. Deng, H. Zhao, Y. Qian, L. Lü, B. Wang, X. Qiu, Ind. Crops Prod. 87, 191 (2016).

    Google Scholar 

  46. W. Yang, J.M. Kenny, D. Puglia, Ind. Crops Prod. 74, 348 (2015).

    Google Scholar 

  47. W. Yang, F. Dominici, E. Fortunati, J.M. Kenny, D. Puglia, Ind. Crops Prod. 77, 833 (2015).

    Google Scholar 

  48. W. Yang, J.S. Owczarek, E. Fortunati, M. Kozanecki, A. Mazzaglia, G.M. Balestra, J.M. Kenny, L. Torre, D. Puglia, Ind. Crops Prod. 94, 800 (2016).

    Google Scholar 

  49. A.P. Richter, B. Bharti, H.B. Armstrong, J.S. Brown, D. Plemmons, V.N. Paunov, S.D. Stoyanov, O.D. Velev, Langmuir 32, 6468 (2016).

    Google Scholar 

  50. K. Shikinaka, N. Fujii, S. Egashira, Y. Murakami, M. Nakamura, Y. Otsuka, S. Ohara, K. Shigehara, Green Chem. 12, 1914 (2010).

    Google Scholar 

  51. A. Barakat, C. Gaillard, D. Lairez, L. Saulnier, B. Chabbert, B. Cathala, Biomacromolecules 9, 487 (2008).

    Google Scholar 

  52. M. Ago, S. Huan, M. Borghei, J. Raula, E.I. Kauppinen, O.J. Rojas, ACS Appl. Mater. Interfaces 8, 23302 (2016).

    Google Scholar 

  53. F. Chen, W. Liu, S.I. Seyed Shahabadi, J. Xu, X. Lu, ACS Sustain. Chem. Eng. 4, 4997 (2016).

    Google Scholar 

  54. Y. Xu, K. Li, M. Zhang, Colloids Surf. A 301, 255 (2007).

    Google Scholar 

  55. D. Saidane, J.-C. Barbe, M. Birot, H. Deleuze, J. Appl. Polym. Sci. 116, 1184 (2010).

    Google Scholar 

  56. V.I. Popa, A.-M. Capraru, S. Grama, T. Malutan, Cell. Chem. Technol. 45, 221 (2011).

    Google Scholar 

  57. D. Saidane, J.C. Barbe, M. Birot, H. Deleuze, J. Appl. Polym. Sci. 128, 424 (2013).

    Google Scholar 

  58. S.R. Yearla, K. Padmasree, J. Exp. Nanosci. 11, 289 (2016).

    Google Scholar 

  59. A.A. Myint, H.W. Lee, B. Seo, W.-S. Son, J. Yoon, T.J. Yoon, H.J. Park, J. Yu, J. Yoon, Y.-W. Lee, Green Chem. 18, 2129 (2016).

    Google Scholar 

  60. I.S. Rudakova, L.M. Molodkina, Y.M. Chernoberezhskii, A.B. Dyagileva, Colloid J. 69, 675 (2007).

    Google Scholar 

  61. T.D. Gevorkyants, Y.M. Chernoberezhskii, A.V. Lotentsson, Colloid J. 74, 751 (2012).

    Google Scholar 

  62. S. Sarkanen, D.C. Teller, E. Abramowski, J.L. McCarthy, Macromolecules 15, 1098 (1982).

    Google Scholar 

  63. A.P. Richter, J.S. Brown, B. Bharti, A. Wang, S. Gangwal, K. Houck, E.A.C. Hubal, V.N. Paunov, S.D. Stoyanov, O.D. Velev, Nat. Nanotechnol. 10, 817 (2015).

    Google Scholar 

  64. M.J. Rak, T. Friscic, A. Moores, RSC Adv. 6, 58365 (2016).

    Google Scholar 

  65. J.-F. Zhong, L. Xu, X.-L. Qin, J. Compos. Mater. 49, 2329 (2015).

    Google Scholar 

  66. J.M. Gutiérrez-Hernández, A. Escalante, R.N. Murillo-Vázquez, E. Delgado, F.J. González, G. Toríz, J. Photochem. Photobiol. B 163, 156 (2016).

    Google Scholar 

  67. X. Chen, D.-H. Kuo, D. Lu, Y. Hou, Y.-R. Kuo, Microporous Mesoporous Mater. 223, 145 (2016).

    Google Scholar 

  68. H. Qin, S. Kang, Y. Wang, H. Liu, Z. Ni, Y. Huang, Y. Li, X. Li, ACS Sustain. Chem. Eng. 4, 1240 (2016).

    Google Scholar 

  69. K. Lintinen, M. Latikka, M.H. Sipponen, R.H. Ras, M. Österberg, M.A. Kostiainen, RSC Adv. 6, 31790 (2016).

    Google Scholar 

  70. I. Hasegawa, Y. Fujii, K. Yamada, C. Kariya, T. Takayama, J. Appl. Polym. Sci. 73, 1321 (1999).

    Google Scholar 

  71. Y. Qu, Y. Tian, B. Zou, J. Zhang, Y. Zheng, L. Wang, Y. Li, C. Rong, Z. Wang, Bioresour. Technol. 101, 8402 (2010).

    Google Scholar 

  72. W. Xiong, D. Yang, R. Zhong, Y. Li, H. Zhou, X. Qiu, Ind. Crops Prod. 74, 285 (2015).

    Google Scholar 

  73. X. Zhang, Z. Zhao, G. Ran, Y. Liu, S. Liu, B. Zhou, Z. Wang, Powder Technol. 246, 664 (2013).

    Google Scholar 

  74. J. Wang, B. Wu, S. Li, G. Sinawang, X. Wang, Y. He, ACS Sustain. Chem. Eng. 4, 4036 (2016).

    Google Scholar 

  75. R.W. Burg, B.M. Miller, E.E. Baker, J. Birnbaum, S.A. Currie, R. Hartman, Y.-L. Kong, R. Monaghan, G. Olson, I. Putter, J.B. Tunac, H. Wallick, E.O. Stapley, R. Oiwa, S. Ō mura, Antimicrob. Agents Chemother. 15, 361 (1979).

    Google Scholar 

  76. H.W. Kwak, M. Shin, H. Yun, K.H. Lee, Int. J. Mol. Sci. 17, 1466 (2016).

    Google Scholar 

  77. S. Park, S.H. Kim, J.H. Kim, H. Yu, H.J. Kim, Y.-H. Yang, H. Kim, Y.H. Kim, S.H. Ha, S.H. Lee, J. Mol. Catal. B Enzym. 119, 33 (2015).

    Google Scholar 

  78. T. Shimada, T. Hata, M. Kijima, ACS Sustain. Chem. Eng. 3, 1690 (2015).

    Google Scholar 

  79. M.F. Borisenkov, A.P. Karmanov, L.S. Kocheva, P.A. Markov, E.I. Istomina, L.A. Bakutova, S.G. Litvinets, E.A. Martinson, E.A. Durnev, F.V. Vityazev, S.V. Popov, Int. J. Polym. Mater. Polym. Biomater. 65, 433 (2016).

    Google Scholar 

  80. K. Zhang, Y. Xu, X. Hua, H. Han, J. Wang, J. Wang, Y. Liu, Z. Liu, Biochem. Eng. J. 41, 251 (2008).

    Google Scholar 

  81. Z. Li, Y. Ge, L. Wan, J. Hazard. Mater. 285, 77 (2015).

    Google Scholar 

  82. A. Demirbas, J. Hazard. Mater. 109, 221 (2004).

    Google Scholar 

  83. H. Harmita, K. Karthikeyan, X. Pan, Bioresour. Technol. 100, 6183 (2009).

    Google Scholar 

  84. M.B. Šc´iban, M.T. Klašnja, M.G. Antov, Ecol. Eng. 37, 2092 (2011).

    Google Scholar 

  85. R. Krachler, F. von der Kammer, F. Jirsa, A. Süphandag, R.F. Krachler, C. Plessl, M. Vogt, B.K. Keppler, T. Hofmann, Global Biogeochem. Cycles 26, GB3024 (2012).

    Google Scholar 

  86. Y.L. Huang, R.L. Fu, Z.K. Huang, X.S. Cheng, Adv. Mater. Res. 391–392, 773 (2012).

    Google Scholar 

Download references

Acknowledgements

We are grateful for the support of the Academy of Finland through funding of the SIRAF Project, and funding support from NordForsk under the Project “High-Value Products from Lignin.”

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mariko Ago.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ago, M., Tardy, B.L., Wang, L. et al. Supramolecular assemblies of lignin into nano- and microparticles. MRS Bulletin 42, 371–378 (2017). https://doi.org/10.1557/mrs.2017.88

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/mrs.2017.88

Navigation