Skip to main content
Log in

Selective laser melting of aluminum alloys

  • Technical Feature
  • Published:
MRS Bulletin Aims and scope Submit manuscript

Abstract

Metal additive manufacturing (AM) processes, such as selective laser melting (SLM), enable powdered metals to be formed into arbitrary three-dimensional shapes. For aluminum alloys, which are desirable in many high-value applications for their low density and good mechanical performance, SLM is regarded as challenging due to the difficulties in laser melting aluminum powders. However, a number of recent studies have demonstrated successful aluminum processing, and have gone on to explore its potential for use in advanced AM componentry. In addition to enabling the fabrication of highly complex structures, SLM produces parts with characteristically fine microstructures that yield distinct mechanical properties. Research is rapidly progressing in this field, with promising results opening up a range of possible applications across scientific and industrial sectors. This article reports on recent developments in this area of research and highlights key topics that require further attention.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. S. Das, D.L. Bourell, S.S. Babu, MRS Bull. 41 (10), 729 (2016).

    Google Scholar 

  2. M. Baumers, C. Tuck, R. Wildman, I. Ashcroft, E. Rosamond, R. Hague, Proc. 23rd Solid Freeform Fabr. Symp . ( The University of Texas at Austin , Austin, TX, 2012), p. 932.

    Google Scholar 

  3. M. Baumers, C. Tuck, R. Wildman, I. Ashcroft, E. Rosamond, R. Hague, J. Ind. Ecol. 17, 418 (2013).

    Google Scholar 

  4. B. Zhang, H. Liao, C. Coddet, Mater. Des. 34, 753 (2012).

    Google Scholar 

  5. B. Ferrar, L. Mullen, E. Jones, R. Stamp, C.J. Sutcliffe, J. Mater. Process. Technol. 212 (2), 355 (2012).

    Google Scholar 

  6. I. Yadroitsev, P. Bertrand, I. Smurov, Appl. Surf. Sci. 253 (19), 8064 (2007).

    Google Scholar 

  7. R. Li, Y. Shi, Z. Wang, L. Wang, J. Liu, W. Jiang, Appl. Surf. Sci. 256 (13), 4350 (2010).

    Google Scholar 

  8. M. Baumers, C. Tuck, R. Wildman, I. Ashcroft, R. Hague, J. Ind. Ecol. (forthcoming).

  9. I. Gibson, D.W. Rosen, B. Stucker, Additive Manufacturing Technologies (Springer, New York, 2010).

    Google Scholar 

  10. L. Loeber, S. Biamino, U. Ackelid, S. Sabbadini, P. Epicoco, P. Fino, J. Eckert, Proc. 22nd Solid Freeform Fabr. Symp. ( The University of Texas at Austin , Austin, TX, 2011), p. 547.

    Google Scholar 

  11. K. Kempen, B. Vrancken, L. Thijs, S. Buls, J. Van Humbeeck, J.-P. Kruth Proc. 24th Solid Freeform Fabr. Symp. ( The University of Texas at Austin , Austin, TX, 2013), p. 131.

    Google Scholar 

  12. D. Buchbinder, W. Meiners, N. Pirch, K. Wissenbach, J. Schrage, J. Laser Appl. 26 (1), 012004 (2014).

    Google Scholar 

  13. W.E. Frazier, J. Mater. Eng. Perform. 23 (6), 12 (2014).

    Google Scholar 

  14. D.L. Bourell, D.W. Rosen, L. Ming, 3D Print. Addit. Manuf. 1 (1), 4 (2014).

    Google Scholar 

  15. V. Matilainen, H. Piili, A. Salminen, T. Syvänen, O. Nyrhilä, Phys. Procedia 56, 317 (2014).

    Google Scholar 

  16. D.L. Bourell, J. Joseph, J. Beaman, M.C. Leu, D.W. Rosen, “A Brief History of Additive Manufacturing and the 2009 Roadmap for Additive Manufacturing: Looking Back and Looking Ahead,” presented at the US–Turkey Workshop On Rapid Technologies, Instanbul, Turkey, September 24, 2009.

  17. D.C. Hofmann, S. Roberts, R. Otis, J. Kolodziejska, R.P. Dillon, J.O. Suh, A.A. Shapiro, Z.K. Liu, J.P. Borgonia, Sci. Rep. 4, 5357 (2014).

    Google Scholar 

  18. N. Guo, M.C. Leu, Front. Mech. Eng. 8 (3), 215 (2013).

    Google Scholar 

  19. S. Leuders, M. Thöne, A. Riemer, T. Niendorf, T. Tröster, H.A. Richard, H.J. Maier, Int. J. Fatigue 48, 300 (2013).

    Google Scholar 

  20. H. Schleifenbaum, W. Meiners, K. Wissenbach, C. Hinke, J. Manuf. Sci. Technol. 2 (3), 161 (2010).

    Google Scholar 

  21. E. Brandl, U. Heckenberger, V. Holzinger, D. Buchbinder, Mater. Des. 34, 159 (2012).

    Google Scholar 

  22. C.J. Tuck, R.J.M. Hague, M. Ruffo, M. Ransley, P. Adams, Int. J. Comput. Integr. Manuf. 21 (3), 245 (2008).

    Google Scholar 

  23. D. Buchbinder, H. Schleifenbaum, S. Heidrich, W. Meiners, J. Bültmann, Phys. Procedia A 12, 271 (2011).

    Google Scholar 

  24. I. Yadroitsev, I. Smurov, Phys. Procedia B 5, 551 (2010).

    Google Scholar 

  25. I. Maskery, N.T. Aboulkhair, A.O. Aremu, C.J. Tuck, I.A. Ashcroft, R.D. Wildman, R.J.M. Hague, Mater. Sci. Eng. A 670, 264 (2016).

    Google Scholar 

  26. I. Yadroitsev, A. Gusarov, I. Yadroitsava, I. Smurov, J. Mater. Process. Technol. 210 (12), 1624 (2010).

    Google Scholar 

  27. N.T. Aboulkhair, I. Maskery, C. Tuck, I. Ashcroft, N.M. Everitt, J. Mater. Process. Technol. 230, 88 (2016).

    Google Scholar 

  28. N.T. Aboulkhair, “Additive Manufacture of an Aluminium Alloy: Processing, Microstructure, and Mechanical Properties,” PhD thesis, The University of Nottingham, UK (2015).

  29. E. Herderick, “Additive Manufacturing of Metals: A Review,” Proc. Mater. Sci. Technol. Conf. 1 (AIST, Warrendale, PA, 2011), p. 1413.

  30. K.V. Wong, A. Hernandez, ISRN Mech. Eng. 2012, 1 (2012).

    Google Scholar 

  31. E.O. Olakanmi, R.F. Cochrane, K.W. Dalgarno, Prog. Mater. Sci. 74, 401 (2015).

    Google Scholar 

  32. M. Tisza, Physical Metallurgy for Engineers ( ASM International, Materials Park, OH; Fruend Publishing House, London, 2002).

  33. Y. Li, D. Gu, Mater. Des. 63, 856 (2014).

    Google Scholar 

  34. G.E. Totten, D.S. Mackenzie, Handbook of Aluminum: Physical Metallurgy and Processes, 1st ed. (CRC Press, New York, 2003).

    Google Scholar 

  35. I.J. Polmear, Light Alloys: Metallurgy of the Light Metals, 3rd ed. (Butterworth-Heinemann , 1995).

  36. W.H. Hosford, Physical Metallurgy, 2nd ed. (CRC Press, New York, 2010).

    Google Scholar 

  37. S. Dadbakhsh, L. Hao, J. Alloys Compd. 541, 328 (2012).

    Google Scholar 

  38. N.T. Aboulkhair, N.M. Everitt, I. Ashcroft, C. Tuck, Addit. Manuf. 1, 77 (2014).

    Google Scholar 

  39. X.J. Wang, L.C. Zhang, M.H. Fang, T.B. Sercombe, Mater. Sci. Eng. A 597, 370 (2014).

    Google Scholar 

  40. L. Thijs, K. Kempen, J.-P. Kruth, J. Van Humbeeck, Acta Mater. 61 (5), 1809 (2013).

    Google Scholar 

  41. E. Louvis, P. Fox, C.J. Sutcliffe, J. Mater. Process. Technol. 211 (2), 275 (2011).

    Google Scholar 

  42. N. Read, W. Wang, K. Essa, M.M. Attallah, Mater. Des. 65, 417 (2015).

    Google Scholar 

  43. M.L. Montero Sistiaga, R. Mertens, B. Vrancken, X. Wang, B. Van Hooreweder, J.-P. Kruth, J. Van Humbeeck, J. Mater. Process. Technol. 238, 437 (2016).

    Google Scholar 

  44. N.T. Aboulkhair, I. Maskery, C. Tuck, I. Ashcroft, N. Everitt, Proc. SPIE 9657, 965702 (2015).

    Google Scholar 

  45. N.T. Aboulkhair, C. Tuck, I. Ashcroft, I. Maskery, N.M. Everitt, Metall. Mater. Trans. A 46A (8), 3337 (2015).

    Google Scholar 

  46. N.T. Aboulkhair, I. Maskery, C. Tuck, I. Ashcroft, N.M. Everitt, Mater. Sci. Eng. A 667, 139 (2016).

    Google Scholar 

  47. I. Maskery, N.T. Aboulkhair, M.R. Corfield, C. Tuck, A.T. Clare, R.K. Leach, R.D. Wildman, I.A. Ashcroft, R.J.M. Hague, Mater. Charact. 111, 193 (2016).

    Google Scholar 

  48. J. Wu, X.Q. Wang, W. Wang, M.M. Attallah, M.H. Loretto, Acta Mater. 117, 311 (2016).

    Google Scholar 

  49. I. Rosenthal, A. Stern, N. Frage, Metallogr. Microstruct. Anal. 3 (6), 448 (2014).

    Google Scholar 

  50. N.T. Aboulkhair, I. Maskery, C. Tuck, I. Ashcroft, N.M. Everitt, Mater. Des. 104, 174 (2016).

    Google Scholar 

  51. B. Ahuja, M. Karg, K.Y. Nagulin, M. Schmidt, Phys. Procedia 56, 135 (2014).

    Google Scholar 

  52. W. Reschetnik, J.P. Brüggemann, M.E. Aydinöz, O. Grydin, K.P. Hoyer, G. Kullmer, H.A. Richard, Procedia Struct. Integr. 2, 3040 (2016).

    Google Scholar 

  53. H. Rao, S. Giet, K. Yang, X. Wu, C.H.J. Davies, Mater. Des. 109, 334 (2016).

    Google Scholar 

  54. N. Kang, P. Coddet, C. Chen, Y. Wang, H. Liao, C. Coddet, Mater. Des. 99, 120 (2016).

    Google Scholar 

  55. N. Kang, P. Coddet, H. Liao, T. Baur, C. Coddet, Appl. Surf. Sci. 378, 142 (2016).

    Google Scholar 

  56. X.P. Li, K.M. O’Donnell, T.B. Sercombe, Addit. Manuf. 10, 10 (2016).

    Google Scholar 

  57. J. Suryawanshi, K.G. Prashanth, S. Scudino, J. Eckert, O. Prakash, U. Ramamurty, Acta Mater. 115, 285 (2016).

    Google Scholar 

  58. P. Ma, Y. Jia, K.G. Prashanth, S. Scudino, Z. Yu, J. Eckert, J. Alloys Compd. 657, 430 (2016).

    Google Scholar 

  59. Y. Ding, J.A. Muñiz-Lerma, M. Trask, S. Chou, A. Walker, M. Brochu, MRS Bull. 41 (10), 745 (2016).

    Google Scholar 

  60. N.T. Aboulkhair, I. Maskery, I. Ashcroft, C. Tuck, N.M. Everitt, “The Role of Powder Properties on the Processability of Aluminium Alloys in Selective Laser Melting,” presented at the Lasers in Manufacturing Conference, Munich, Germany, 2015 .

  61. J.C. Ion, Laser Processing of Engineering Materials: Principles, Procedure and Industrial Application (Butterworth-Heinemann, St. Louis, 2005).

    Google Scholar 

  62. G.E. Totten, D.S. MacKenzie, Eds., Handbook of Aluminum, Volume 2: Alloy Production and Materials Manufacturing (CRC Press, New York, 2003).

    Google Scholar 

  63. C. Kamath, B. El-dasher, G.F. Gallegos, W.E. King, A. Sisto, “Density of Additively Manufactured, 316L SS Parts Using Laser Powder-Bed Fusion at Powers Up to 400W,” (UNT Digital Library), http://digital.library.unt.edu/ark:/67531/metadc872227 (accessed October 2016).

  64. C. Tuck, I. Maskery, M. Simonelli, N. Aboulkhair, I. Ashcroft, N. Everitt, R. Wildman, R. Hague, “Aspects of the Process and Material Relationships in the Selective Laser Melting of Aluminium Alloys,” presented at the TMS Annual Meeting & Exhibition (Orlando, FL, March 15–19, 2015 ).

  65. M. Simonelli, C. Tuck, N.T. Aboulkhair, I. Maskery, I. Ashcroft, R.D. Wildman, R. Hague, Metall. Mater. Trans. A 46A (9), 3842 (2015).

    Google Scholar 

  66. K. Kempen, L. Thijs, E. Yasa, M. Badrossamay, W. Verheecke, J.-P. Kruth Proc. 22nd Solid Freeform Fabr. Symp. ( The University of Texas at Austin , Austin, TX, 2011), p. 484.

    Google Scholar 

  67. D. Dai, D. Gu, Mater. Des. 55, 482 (2014).

    Google Scholar 

  68. I. Yadroitsev, P. Krakhmalev, I. Yadroitsava, S. Johansson, I. Smurov, J. Mater. Process. Technol. 213 (4), 606 (2013).

    Google Scholar 

  69. Y. Pupo, J. Delgado, L. Serenó, J. Ciurana, Procedia Eng. 63, 370 (2013).

    Google Scholar 

  70. W.E. King, H.D. Barth, V.M. Castillo, G.F. Gallegos, J.W. Gibbs, D.E. Hahn, C. Kamath, A.M. Rubenchik, J. Mater. Process. Technol. 214 (12), 2915 (2014).

    Google Scholar 

  71. X. Su, Y. Yang, J. Mater. Process. Technol. 212 (10), 2074 (2012).

    Google Scholar 

  72. M. Simonelli, Y.Y. Tse, C. Tuck, Metall. Mater. Trans. A 45 (6), 2863 (2014).

    Google Scholar 

  73. J.E. Hatch, Aluminum: Properties and Physical Metallurgy (ASM International, Materials Park, OH, 1984).

    Google Scholar 

  74. N.M. Everitt, N.T. Aboulkhair, I. Maskery, C. Tuck, I. Ashcroft, Adv. Mater. Lett. 7 (1), 13 (2016).

    Google Scholar 

  75. K.G. Prashanth, S. Scudino, H.J. Klauss, K.B. Surreddi, L. Löber, Z. Wang, A.K. Chaubey, U. Kühn, J. Eckert, Mater. Sci. Eng. A 590, 153 (2014).

    Google Scholar 

  76. W. Kurz, R. Trivedi, Metall. Mater. Trans. A 22 (12), 3051 (1991).

    Google Scholar 

  77. P. Ma, K.G. Prashanth, S. Scudino, YD. Jia, H.W. Wang, CM. Zou, Z.J. Wei J. Eckert, Metals 4 (1), 28 (2014).

    Google Scholar 

  78. W. Li, S. Li, J. Liu, A. Zhang, Y. Zhou, Q. Wei, C. Yan, Y Shi, Mater. Sci. Eng. A 663, 116 (2016).

    Google Scholar 

  79. S. Siddique, M. Imran, E. Wycisk, C. Emmelmann, F. Walther, J. Mater. Process. Technol . 221, 205 (2015).

    Google Scholar 

  80. K. Kempen, L. Thijs, J. Van Humbeeck, J.P. Kruth, Phys. Procedia 39, 439 (2012).

    Google Scholar 

  81. K. Bartkowiak, S. Ullrich, T. Frick, M. Schmidt, Phys. Procedia A 12, 393 (2011).

    Google Scholar 

  82. U. Tradowsky, J. White, R.M. Ward, N. Read, W. Reimers, M.M. Attallah Mater. Des. 105, 212 (2016).

    Google Scholar 

  83. K.G. Prashanth, R. Damodaram, S. Scudino, Z. Wang, K. Prasad Rao, J. Eckert, Mater. Des. 57, 632 (2014).

    Google Scholar 

  84. S. Siddique, M. Imran, F. Walther, Int. J. Fatigue (forthcoming).

  85. I. Maskery, N.T. Aboulkhair, C. Tuck, R.D. Wildman, I.A. Ashcroft, N.M. Everitt, R.J.M. Hague, 26th Solid Freeform Fabr. Symp. ( The University of Texas at Austin , Austin, TX, 2015), p. 1017.

    Google Scholar 

  86. M. Tang, P.C. Pistorius, Int. J. Fatigue (forthcoming).

  87. P. Edwards, M. Ramulu, Mater. Sci. Eng. A 598, 327 (2014).

    Google Scholar 

  88. P. Kanagarajah, F. Brenne, T. Niendorf, H.J. Maier, Mater. Sci. Eng. A 588, 188 (2013).

    Google Scholar 

  89. D. Buchbinder, W. Meiners, K. Wissenbach, R. Poprawe, J. Laser Appl. 27, S29205 (2015).

    Google Scholar 

  90. R. González, A. González, J. Talamantes-Silva, S. Valtierra, R.D. Mercado-Solís N.F Garza-Montes-de-Oca, R. Colás, Int. J. Fatigue 54, 118 (2013).

    Google Scholar 

  91. E. Zahavi, V. Torbilo, Fatigue Design: Life Expectancy of Machine Parts (CRC Press , New York, 1996).

    Google Scholar 

  92. S. Suresh, Fatigue of Materials, 2 nd ed. ( Cambridge University Press Cambrige, UK, 1998).

    Google Scholar 

  93. Airbus-Group, SCALMALLOY-RP Aluminum-Magnesium-Scandium Alloy Powder, http://www.technology-licensing.com/etl/int/en/What-we-offer/Technologies-for-licensing/Metallics-and-related-manufacturing-technologies/Scalmalloy-RP.html (accessed November 2014).

  94. R.S. Razavi, G.R. Gordani, “Laser Surface Treatments of Aluminum Alloys,” in Recent Trends in Processing and Degradation of Aluminium Alloys, P.Z. Ahmed, Ed. (InTech, 2011), pp. 115–154, doi:10.5772/18451.

  95. D.S. Gnanamuthu, Opt. Eng. 19 (5), 195783 (1980).

    Google Scholar 

  96. S. Tomida, K. Nakata, S. Saji, T. Kubo, Surf. Coat. Technol . 142–144, 585 (2001).

    Google Scholar 

  97. M. Sachs, O. Hentschel, J. Schmidt, M. Karg, M. Schmidt, K.-E. Wirth, Phys. Procedia 56, 125 (2014).

    Google Scholar 

  98. P. Vora, K. Mumtaz, I. Todd, N. Hopkinson, Addit. Manuf. 7, 12 (2015).

    Google Scholar 

  99. A. Clare, A. Kennedy, “Additive Manufacturing,” US Patent 20160279703 A1 (2016).

  100. A.N.D. Gasper, S. Catchpole-Smith, AT. Clare, J. Mater. Process. Technol . 239, 230 (2017).

    Google Scholar 

  101. L.C. Ardila, F. Garciandia, J.B. González-Díaz, P. Álvarez, A. Echeverria M.M. Petite, R. Deffley, J. Ochoa, Phys. Procedia 56, 99 (2014).

    Google Scholar 

  102. V. Seyda, N. Kaufmann, C. Emmelmann, Phys. Procedia 39, 425 (2012)

    Google Scholar 

  103. S. Dadbakhsh, L. Hao, Scientific World J. 2014, 106129 (2014).

    Google Scholar 

  104. S. Dadbakhsh, L. Hao, P.G.E. Jerrard, D.Z. Zhang, Powder Technol . 231 112 (2012).

    Google Scholar 

  105. D. Gu, F. Chang, D. Dai, J. Manuf. Sci. Eng. 137 (2), 021010 (2014).

    Google Scholar 

  106. D. Gu, H. Wang, F. Chang, D. Dai, P. Yuan, Y.-C. Hagedorn, W. Meiners , Phys. Procedia 56, 108 (2014).

    Google Scholar 

  107. D.D. Gu, H.Q. Wang, D.H. Dai, P.P. Yuan, W. Meiners, R. Poprawe, Scr. Mater 96, 25 (2015).

    Google Scholar 

  108. D. Gu, Z. Wang, Y Shen, Q. Li, Y. Li, Appl. Surf. Sci. 255 (22), 9230 (2009).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nesma T. Aboulkhair.

Additional information

This technical feature article is related to the theme of the October 2016 MRS Bulletin issue on “Metallic materials for 3D printing.”

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aboulkhair, N.T., Everitt, N.M., Maskery, I. et al. Selective laser melting of aluminum alloys. MRS Bulletin 42, 311–319 (2017). https://doi.org/10.1557/mrs.2017.63

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/mrs.2017.63

Navigation