Skip to main content
Log in

Modeling slip and flow enhancement of water in carbon nanotubes

  • Materials Enabling Nanofluidic Flow Enhancement
  • Published:
MRS Bulletin Aims and scope Submit manuscript

Abstract

Transport properties of fluids in nanopores are of both fundamental as well as practical interest. Water flow in carbon nanotubes (CNTs) has received significant attention since the early 2000s for technological applications of CNTs. In this article, we provide a brief overview of modeling the slip and flow enhancement of water in CNTs. A number of experimental and computational studies have found water to flow very fast in CNTs, but the measured flow rates, which are high compared to classical hydrodynamics predictions, are scattered over 2–5 orders of magnitude. Slip lengths of 1 to 500,000 nm, resulting in almost zero to 500,000 flow enhancement, are reported for water in CNTs with diameters of 0.8 to 10 nm. We highlight some challenges in modeling fluid flow in nanopores and outline a few research directions that may resolve the order of slip and flow enhancement of water in CNTs in computational studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

References

  1. J.C. Eijkel, A. Van Den Berg, Microfluid. Nanofluid. 1, 249 (2005).

    Google Scholar 

  2. R.B. Schoch, J. Han, P. Renaud, Rev. Mod. Phys. 80, 839 (2008).

    Google Scholar 

  3. A. Alexiadis, S. Kassinos, Chem. Rev. 108, 5014 (2008).

    Google Scholar 

  4. D. Mattia, Y. Gogotsi, Microfluid. Nanofluid. 5, 289 (2008).

    Google Scholar 

  5. A. Noy, H.G. Park, F. Fornasiero, J.K. Holt, C.P. Grigoropoulos, O. Bakajin, Nano Today 2, 22 (2007).

    Google Scholar 

  6. S.K. Kannam, B.D. Todd, J.S. Hansen, P.J. Daivis, J. Chem. Phys. 138, 094701 (2013).

    Google Scholar 

  7. M. Majumder, N. Chopra, R. Andrews, B.J. Hinds, Nature 438, 44 (2005).

    Google Scholar 

  8. J.K. Holt, H.G. Park, Y. Wang, M. Stadermann, A.B. Artyukhin, C.P. Grigoropoulos, A. Noy, O. Bakajin, APS Mtg. Abstr. 1, 18012 (2006).

    Google Scholar 

  9. M. Majumder, N. Chopra, B.J. Hinds, ACS Nano 5, 3867 (2011).

    Google Scholar 

  10. M. Majumder, B. Corry, Chem. Commun. 47, 7683 (2011).

    Google Scholar 

  11. F. Du, L. Qu, Z. Xia, L. Feng, L. Dai, Langmuir 27, 8437 (2011).

    Google Scholar 

  12. X. Qin, Q. Yuan, Y. Zhao, S. Xie, Z. Liu, Nano Lett. 11, 2173 (2011).

    Google Scholar 

  13. W.D. Nicholls, M.K. Borg, D.A. Lockerby, J.M. Reese, Microfluid. Nanofluid. 12, 257 (2012).

    Google Scholar 

  14. M. Whitby, L. Cagnon, M. Thanou, N. Quirke, Nano Lett. 8, 2632 (2008).

    Google Scholar 

  15. Y. Baek, C. Kim, D.K. Seo, T. Kim, J.S. Lee, Y.H. Kim, K.H. Ahn, S.S. Bae, S.C. Lee, J. Lim, K. Lee, J. Yoon, J. Membr. Sci. 460, 171 (2014).

    Google Scholar 

  16. E. Secchi, S. Marbach, A. Nigues, D. Stein, A. Siria, L. Bocquet, Nature 537, 210 (2016).

    Google Scholar 

  17. J.A. Thomas, A.J. McGaughey, Nano Lett. 8, 2788 (2008).

    Google Scholar 

  18. J.A. Thomas, A.J. McGaughey, Phys. Rev. Lett. 102, 184502 (2009).

    Google Scholar 

  19. S. Joseph, N. Aluru, Nano Lett. 8, 452 (2008).

    Google Scholar 

  20. K. Falk, F. Sedlmeier, L. Joly, R.R. Netz, L. Bocquet, Nano Lett. 10, 4067 (2010).

    Google Scholar 

  21. M.D. Ma, L. Shen, J. Sheridan, J.Z. Liu, C. Chen, Q. Zheng, Phys. Rev. E 83, 036316 (2011).

    Google Scholar 

  22. J.S. Babu, S.P. Sathian, J. Chem. Phys. 134, 194509 (2011).

    Google Scholar 

  23. E. Kotsalis, J. Walther, P. Koumoutsakos, Int. J. Multiphase Flow 30, 995 (2004).

    Google Scholar 

  24. L. Wang, R.S. Dumont, J.M. Dickson, J. Chem. Phys. 137, 044102 (2012).

    Google Scholar 

  25. T.G. Myers, Microfluid. Nanofluid. 10, 1141 (2011).

    Google Scholar 

  26. D. Mattia, F. Calabro, Microfluid. Nanofluid. 13, 125 (2012).

    Google Scholar 

  27. G.K. Batchelor, An Introduction to Fluid Dynamics (Cambridge University Press , Cambridge, UK , 2000).

    Google Scholar 

  28. S.K. Kannam, PhD thesis, “Prediction of Fluid Slip at Graphene and Carbon Nanotube Interfaces,” Swinburne University of Technology , Melbourne, Australia (2013).

  29. C. Navier, Mem. Acad. Sci. Inst. France 6, 389 (1823).

    Google Scholar 

  30. G. Hummer, J.C. Rasaiah, J.P. Noworyta, Nature 414, 188 (2001).

    Google Scholar 

  31. S.K. Kannam, B.D. Todd, J.S. Hansen, P.J. Daivis, J. Chem. Phys. 136, 024705 (2012).

    Google Scholar 

  32. I. Hanasaki, A. Nakatani, J. Chem. Phys. 124, 144708 (2006).

    Google Scholar 

  33. K. Ritos, D. Mattia, F. Calabro, J.M. Reese, J. Chem. Phys. 140, 014702 (2014).

    Google Scholar 

  34. E.M. Kotsalis, PhD thesis, “Multiscale Modeling and Simulation of Fullerenes in Liquids,” ETH Zürich, Switzerland ( 2008).

  35. L. Bocquet, J.-L. Barrat, Phys. Rev. E 49, 3079 (1994).

    Google Scholar 

  36. S.K. Kannam, B.D. Todd, J.S. Hansen, P.J. Daivis, J. Chem. Phys. 136 244704 (2012).

    Google Scholar 

  37. J. Petravic, P. Harrowell, J. Chem. Phys. 127, 174706 (2007).

    Google Scholar 

  38. K. Huang, I. Szlufarska, Phys. Rev. E 89, 032119 (2014).

    Google Scholar 

  39. S. Chen, H. Wang, T. Qian, P. Sheng, Phys. Rev. E 92, 043007 (2015).

    Google Scholar 

  40. V.P. Sokhan, N. Quirke, Phys. Rev. E 78, 015301 (2008).

    Google Scholar 

  41. R. Bhadauria, N. Aluru, J. Chem. Phys. 139, 074109 (2013).

    Google Scholar 

  42. J.S. Hansen, B.D. Todd, P.J. Daivis, Phys. Rev. E 84, 016313 (2011)

    Google Scholar 

  43. B.D. Todd, J.S. Hansen, Phys. Rev. E 78, 051202 (2008).

    Google Scholar 

  44. B.D. Todd, J.S. Hansen, P.J. Daivis, Phys. Rev. Lett. 100, 195901 (2008).

    Google Scholar 

  45. K.P. Travis, B.D. Todd, D.J. Evans, Phys. Rev. E 55, 4288 (1997).

    Google Scholar 

  46. S.K. Kannam, B.D. Todd, J.S. Hansen, P.J. Daivis, J. Chem. Phys. 135, 144701 (2011).

    Google Scholar 

  47. J. Wong-Ekkabut, M.S. Miettinen, C. Dias, M. Karttunen, Nat. Nanotechnol. 5, 555 (2010).

    Google Scholar 

  48. J. Su, H. Guo, J. Phys. Chem. B 116, 5925 (2012).

    Google Scholar 

  49. S. Bernardi, B.D. Todd, D.J. Searles, J. Chem. Phys. 132, 244706 (2010).

    Google Scholar 

  50. V.P. Sokhan, D. Nicholson, N. Quirke, J. Chem. Phys. 117, 8531 (2002).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sridhar Kumar Kannam.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kannam, S.K., Daivis, P.J. & Todd, B.D. Modeling slip and flow enhancement of water in carbon nanotubes. MRS Bulletin 42, 283–288 (2017). https://doi.org/10.1557/mrs.2017.61

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/mrs.2017.61

Navigation