Skip to main content
Log in

Experimental measurements in single-nanotube fluidic channels

  • Materials Enabling Nanofluidic Flow Enhancement
  • Published:
MRS Bulletin Aims and scope Submit manuscript

Abstract

Technologies for detecting and analyzing a single molecule help us understand and engineer numerous phenomena observed in nature. Carbon nanotubes (CNTs) are highly efficient molecular conduits due to their atomically smooth surface. Because of their small diameters, comparable to the size of a single molecule, even a single blocking molecule can obstruct CNT fluidic channels. Analyzing these pore-blocking events in CNTs therefore enables single-molecule studies. The high-aspect ratios of CNT channels, which extend the time scale of transport, allow for studying molecular transport that is too fast to record in other systems. Both theoretical studies and ensemble experimental measurements have verified the enhanced flow of various ions and molecular species in CNTs. Experimental measurements of a single-CNT fluidic channel, however, have only recently begun, demonstrating the detection of individual DNA, polymer, and alkali-metal ions. This article reviews recent advances in single-nanotube fluidic channels with a focus on experimental measurements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. J.K. Holt, Adv. Mater. 21, 3542 (2009).

    Google Scholar 

  2. H.G. Park, Y. Jung, Chem. Soc. Rev. 43, 565 (2014).

    Google Scholar 

  3. A. Noy, H.G. Park, F. Fornasiero, J.K. Holt, C.P. Grigoropoulos, O. Bakajin, Nano Today 2, 22 (2007).

    Google Scholar 

  4. P. Pang, J. He, J.H. Park, P.S. Krstic, S. Lindsay, ACS Nano 5, 7277 (2011).

    Google Scholar 

  5. H.T. Liu, J. He, J.Y. Tang, H. Liu, P. Pang, D. Cao, P. Krstic, S. Joseph, S. Lindsay, C. Nuckolls, Science 327, 64 (2010).

    Google Scholar 

  6. T. Ito, L. Sun, R.M. Crooks, Chem. Commun. 13, 1482 (2003).

    Google Scholar 

  7. L. Sun, R.M. Crooks, J. Am. Chem. Soc. 122, 12340 (2000).

    Google Scholar 

  8. C.Y. Lee, W. Choi, J.H. Han, M.S. Strano, Science 329, 1320 (2010).

    Google Scholar 

  9. W. Choi, Z.W. Ulissi, S.F. Shimizu, D.O. Bellisario, M.D. Ellison, M.S. Strano, Nat. Commun. 4, 2397 (2013).

    Google Scholar 

  10. R.B. Schoch, J.Y. Han, P. Renaud, Rev. Mod. Phys. 80, 839 (2008).

    Google Scholar 

  11. J. Wu, K.S. Paudel, C. Strasinger, D. Hammell, A.L. Stinchcomb, B.J. Hinds, Proc. Natl. Acad. Sci. U.S.A. 107, 11698 (2010).

    Google Scholar 

  12. X.L. Pan, Z.L. Fan, W. Chen, Y.J. Ding, H.Y. Luo, X.H. Bao, Nat. Mater. 6, 507 (2007).

    Google Scholar 

  13. S.M. Huang, X.Y. Cai, J. Liu, J. Am. Chem. Soc. 125, 5636 (2003).

    Google Scholar 

  14. Z. Jin, H.B. Chu, J.Y. Wang, J.X. Hong, W.C. Tan, Y. Li, Nano Lett. 7, 2073 (2007).

    Google Scholar 

  15. W. Choi, C.Y. Lee, M.H. Ham, S. Shimizu, M.S. Strano, J. Am. Chem. Soc. 133, 203 (2011).

    Google Scholar 

  16. W.S. Song, P. Pang, J. He, S. Lindsay, ACS Nano 7, 689 (2013).

    Google Scholar 

  17. J. Wu, K. Gerstandt, M. Majumder, X. Zhan, B.J. Hinds, Nanoscale 3, 3321 (2011).

    Google Scholar 

  18. J. Wu, K. Gerstandt, H.B. Zhang, J. Liu, B.J. Hinds, Nat. Nanotechnol. 7, 133 (2012).

    Google Scholar 

  19. B. Lee, Y. Baek, M. Lee, D.H. Jeong, H.H. Lee, J. Yoon, Y.H. Kim, Nat. Commun. 6, 7109 (2015).

    Google Scholar 

  20. T. Ito, L. Sun, R.M. Crooks, Anal. Chem. 75, 2399 (2003).

    Google Scholar 

  21. T. Ito, L. Sun, R.R. Henriquez, R.M. Crooks, Acc. Chem. Res. 37, 937 (2004).

    Google Scholar 

  22. L. Liu, J.I. Xie, T. Li, H.C. Wu, Nat. Protoc. 10, 1670 (2015).

    Google Scholar 

  23. L. Liu, C. Yang, K. Zhao, J.Y. Li, H.C. Wu, Nat. Commun. 4, 2989 (2013).

    Google Scholar 

  24. E. Secchi, A. Nigues, L. Jubin, A. Siria, L. Bocquet, Phys. Rev. Lett. 116, 154501 (2016).

    Google Scholar 

  25. J. Geng, K. Kim, J.F. Zhang, A. Escalada, R. Tunuguntla, L.R. Comolli, F.I. Allen, A.V. Shnyrova, K.R. Cho, D. Munoz, Y.M. Wang, C.P. Grigoropoulos, C.M. Ajo-Franklin, V.A. Frolov, A. Noy, Nature 514, 612 (2014).

    Google Scholar 

  26. R.H. Tunuguntla, F.I. Allen, K. Kim, A. Belliveau, A. Noy, Nat. Nanotechnol. 11, 639 (2016).

    Google Scholar 

  27. J. He, H. Liu, P. Pang, D. Cao, S. Lindsay, J. Phys. Condens. Matter 22, 454112 (2010).

    Google Scholar 

  28. J.H. Park, J. He, B. Gyarfas, S. Lindsay, P.S. Krstic, Nanotechnology 23, 455107 (2012).

    Google Scholar 

  29. A.S. Pikovsky, J. Kurths, Phys. Rev. Lett. 78, 775 (1997).

    Google Scholar 

  30. S.R. Guo, E.R. Meshot, T. Kuykendall, S. Cabrini, F. Fornasiero, Adv. Mater. 27, 5726 (2015).

    Google Scholar 

  31. S. Huang, M. Romero-Ruiz, O.K. Castell, H. Bayley, M.I. Wallace, Nat. Nano-technol. 10, 986 (2015).

    Google Scholar 

  32. C. Wang, R.L. Bruce, E.A. Duch, J.V. Patel, J.T. Smith, Y. Astier, B.H. Wunsch, S. Meshram, A. Galan, C. Scerbo, M.A. Pereira, D.Q. Wang, E.G. Colgan, Q.H. Lin, G. Stolovitzky, ACS Nano 9, 1206 (2015).

    Google Scholar 

  33. J.W.F. Robertson, C.G. Rodrigues, V.M. Stanford, K.A. Rubinson, O.V. Krasilnikov, J.J. Kasianowicz, Proc. Natl. Acad. Sci. U.S.A. 104, 8207 (2007).

    Google Scholar 

  34. F. Bonardi, N. Nouwen, B.L. Feringa, A.J.M. Driessen, Mol. Biosyst. 8, 709 (2012).

    Google Scholar 

  35. M. Fyta, J. Phys. Condens. Matter 27, 273101 (2015).

    Google Scholar 

  36. I.M. Derrington, T.Z. Butler, M.D. Collins, E. Manrao, M. Pavlenok, M. Niederweis, J.H. Gundlach, Proc. Natl. Acad. Sci. U.S.A. 107, 16060 (2010).

    Google Scholar 

Download references

Acknowledgments

This work was supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science, and Technology (NRF-2013R1A1A2073264, NRF-2016R1C1B1013524) and the Nano Material Technology Development Program (2016M3A7B4910635). We also acknowledge valuable comments by A. Noy at the Lawrence Livermore National Laboratory.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hyegi Min.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Min, H., Kim, YT. & Lee, C.Y. Experimental measurements in single-nanotube fluidic channels. MRS Bulletin 42, 300–305 (2017). https://doi.org/10.1557/mrs.2017.57

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/mrs.2017.57

Navigation