Skip to main content
Log in

Mechanisms of selective ion transport and salt rejection in carbon nanostructures

  • Materials Enabling Nanofluidic Flow Enhancement
  • Published:
MRS Bulletin Aims and scope Submit manuscript

Abstract

Carbon nanostructures, especially carbon nanotubes and graphene nanopores, have been suggested for use in a wide range of purification and separation applications, from the desalination of seawater to the separation of liquids and gases. However, achieving the required high degree of selectivity among the molecules passing through the pores while maintaining rapid transport is a difficult challenge. Here, we examine the physical mechanisms by which nanopores distinguish between small ions and reject salts while passing water, as examples of how selectivity and purification can be achieved. The simple principles described can be utilized to design novel nanoporous materials for the separation of a wide range of gases, liquids, and solutes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

Notes

  1. * The diameter of nanotubes can be measured in many different ways, including the effective internal diameter taking into account the size of the carbon atoms, the distance between the centers of opposing carbon atoms, or the outside of the carbon density seen in electron micrographs. In this article, we refer only to effective internal diameters.

References

  1. J.K. Holt, H.G. Park, Y. Wang, M. Stadermann, A.B. Artyukhin, C.P. Grigoropoulos, A. Noy, O. Bakajin, Science 312, 1034 (2006).

    Google Scholar 

  2. M. Majumder, N. Chopra, R. Andrews, B.J. Hinds, Nature 438, 44 (2005).

    Google Scholar 

  3. A.I. Skoulidas, D.M. Ackerman, J.K. Johnson, D.S. Sholl, Phys. Rev. Lett. 89, 185901 (2002).

    Google Scholar 

  4. M. Majumder, N. Chopra, B.J. Hinds, ACS Nano 5, 3867 (2011).

    Google Scholar 

  5. S. Kumar, S. Srivastava, Y.K. Vijay, Int. J. Hydrogen Energy 37, 3914 (2012).

    Google Scholar 

  6. S.P. Koenig, L. Wang, J. Pellegrino, J.S. Bunch, Nat. Nanotechnol. 7, 728 (2012).

    Google Scholar 

  7. L. Zhang, B. Zhao, X. Wang, Y. Liang, H. Qiu, G. Zheng, J. Yang, Carbon 66, 11 (2014).

    Google Scholar 

  8. J. Wu, K. Gerstandt, H. Zhang, J. Liu, B.J. Hinds, Nat. Nanotechnol. 7, 133 (2012).

    Google Scholar 

  9. W. Choi, Z.W. Ulissi, S.F.E. Shimizu, D.O. Bellisario, M.D. Ellison, M.S. Strano, Nat. Commun. 4, 2397 (2013).

    Google Scholar 

  10. F. Fornasiero, J.B. In, S. Kim, H.G. Park, Y. Wang, C.P. Grigoropoulos, A. Noy, O. Bakajin, Langmuir 26, 14848 (2010).

    Google Scholar 

  11. F. Fornasiero, H.G. Park, J.K. Holt, M. Stadermann, C.P. Grigoropoulos, A. Noy O. Bakajin, Proc. Natl. Acad. Sci. U.S.A. 105, 17250 (2008).

    Google Scholar 

  12. H. Huang, Z. Song, N. Wei, L. Shi, Y. Mao, Y. Ying, L. Sun, Nat. Commun. 4, 1 (2013).

    Google Scholar 

  13. G. Hummer, J.C. Rasaiah, J.P. Noworyta, Nature 414, 188 (2001).

    Google Scholar 

  14. B. Corry, J. Phys. Chem. B 112, 1427 (2008).

    Google Scholar 

  15. C. Song, B. Corry, J. Phys. Chem. B 113, 7642 (2009).

    Google Scholar 

  16. C. Peter, G. Hummer, Biophys. J. 89, 2222 (2005).

    Google Scholar 

  17. M. Thomas, B. Corry, Philos. Trans. R. Soc. Lond. A 374, 20150020 (2016).

    Google Scholar 

  18. B. Corry, PeerJ 1, e16 (2013).

    Google Scholar 

  19. Z. He, J. Zhou, X. Lu, B. Corry, J. Phys. Chem. C 117, 11412 (2013).

    Google Scholar 

  20. D. Cohen-Tanugi, J.C. Grossman, Nano Lett. 12, 3602 (2012).

    Google Scholar 

  21. B. Corry, Energy Environ. Sci. 4, 751 (2011).

    Google Scholar 

  22. Z.E. Hughes, C.J. Shearer, J. Shapter, J.D. Gale, J. Phys. Chem. C 116, 24943 (2012).

    Google Scholar 

  23. W.-F. Chan, H.-Y. Chen, A. Surapathi, M.G. Taylor, X. Shao, E. Marand, J.K. Johnson, ACS Nano 7, 5308 (2013).

    Google Scholar 

  24. K. Sint, B.Y. Wang, P. Kral, J. Am. Chem. Soc. 131, 9600 (2009).

    Google Scholar 

  25. L.A. Richards, B.S. Richards, B. Corry, A.I. Schäfer, Environ. Sci. Technol. 47, 1968 (2013).

    Google Scholar 

  26. L.A. Richards, A.I. Schäfer, B.S. Richards, B. Corry, Small 8, 1701 (2012).

    Google Scholar 

  27. L.A. Richards, A.I. Schäfer, B.S. Richards, B. Corry, Phys. Chem. Chem. Phys. 14, 11633 (2012).

    Google Scholar 

  28. S. Garaj, W. Hubbard, A. Reina, J. Kong, D. Branton, J.A. Golovchenko, Nature 467, 190 (2010).

    Google Scholar 

  29. T. Jain, B.C. Rasera, R.J.S. Guerrero, M.S.H. Boutilier, S.C. O’Hern, J.-C. Idrobo, R. Karnik, Nat. Nanotechnol. 10, 1 (2015).

    Google Scholar 

  30. R.C. Rollings, A.T. Kuan, J.A. Golovchenko, Nat. Commun. 7, 11408 (2016).

    Google Scholar 

  31. M. Majumder, N. Chopra, B.J. Hinds, J. Am. Chem. Soc. 127, 9062 (2005).

    Google Scholar 

  32. M. Majumder, B. Corry, Chem. Commun. 47, 7683 (2011).

    Google Scholar 

  33. M. Majumder, X. Zhan, R. Andrews, B.J. Hinds, Langmuir 23, 8624 (2007).

    Google Scholar 

  34. M. Lemasurier, L. Heginbotham, C. Miller, J. Gen. Physiol. 118, 303 (2001).

    Google Scholar 

  35. X. Gong, J. Li, K. Xu, J. Wang, H. Yang, J. Am. Chem. Soc. 132, 1873 (2010).

    Google Scholar 

  36. Z. He, J. Zhou, X. Lu, B. Corry, ACS Nano 7, 10148 (2013).

    Google Scholar 

  37. J. Payandeh, T. Scheuer, N. Zheng, W.A. Catterall, Nature 475, 353 (2011).

    Google Scholar 

  38. Y. Kang, Z. Zhang, H. Shi, J. Zhang, L. Liang, Q. Wang, H. Agren, Y. Tu, Nanoscale 6, 10666 (2014).

    Google Scholar 

Download references

Acknowledgments

This work was supported in part by funding from the Australian Research Council (FT130100781).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ben Corry.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Corry, B. Mechanisms of selective ion transport and salt rejection in carbon nanostructures. MRS Bulletin 42, 306–310 (2017). https://doi.org/10.1557/mrs.2017.56

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/mrs.2017.56

Navigation