Skip to main content
Log in

Pattern formation during electrochemical and liquid metal dealloying

  • Dealloyed Nanoporous Materials with Interface-Controlled Behavior
  • Published:
MRS Bulletin Aims and scope Submit manuscript

Abstract

Dealloying has evolved from a problematic corrosion process to a versatile tool for scalable fabrication of nanostructured metals. While the original, and majority of, work in the area has focused on electrochemical dealloying, a powerful variation of dealloying—liquid metal dealloying—has recently gained popularity. This process relies on a melt to carry out selective dissolution, replacing the traditional electrolyte solution. While electrolytes and molten metals are both suitable dealloying media, they can lead to very different morphologies. In this article, we compare and contrast what is known about the microscale physics and chemistry controlling microstructural evolution in electrochemical and liquid metal dealloying. We conclude that the core phenomenology of porosity evolution—a competition between dissolution and interface diffusion—is similar in both dealloying processes, but that the relative magnitudes of these two processes control interfacial pattern formation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. J. Erlebacher, R. Seshadri, MRS Bull. 34, 561 (2009).

    Google Scholar 

  2. I. McCue, E. Benn, B. Gaskey, J. Erlebacher, Annu. Rev. Mater. Res. 46, 263 (2016).

    Google Scholar 

  3. J. Erlebacher, K. Sieradzki, Scr. Mater. 49, 991 (2003).

    Google Scholar 

  4. J. Erlebacher, J. Electrochem. Soc. 151, C614 (2004).

    Google Scholar 

  5. J. Erlebacher, M.J. Aziz, A. Karma, N. Dimitrov, K. Sieradzki, Nature 410, 450 (2001).

    Google Scholar 

  6. K. Sieradzki, J. Electrochem. Soc. 140, 2868 (1993).

    Google Scholar 

  7. T. Wada, K. Yubuta, A. Inoue, H. Kato, Mater. Lett. 65, 1076 (2011).

    Google Scholar 

  8. I. McCue, B. Gaskey, P.-A. Geslin, A. Karma, J. Erlebacher, Acta Mater. 115, 10 (2016).

    Google Scholar 

  9. P. Geslin, I. McCue, B. Gaskey, J. Erlebacher, A. Karma, Nat. Commun. 6, 8887 (2015).

    Google Scholar 

  10. X. Zhang, Y. Ding, Catal. Sci. Technol. 3, 2862 (2013).

    Google Scholar 

  11. Y. Ding, M. Chen, MRS Bull. 34, 569 (2009).

    Google Scholar 

  12. Y. Ding, Y.J. Kim, J. Erlebacher, Adv. Mater. 16, 1897 (2004).

    Google Scholar 

  13. J. Snyder, T. Fujita, M.W. Chen, J. Erlebacher, Nat. Mater. 9, 904 (2010).

    Google Scholar 

  14. T. Fujita, P. Guan, K. McKenna, X. Lang, A. Hirata, L. Zhang, T. Tokunaga, S. Arai, Y. Yamamoto, N. Tanaka, Y. Ishikawa, N. Asao, Y. Yamamoto, J. Erlebacher, M. Chen, Nat. Mater. 11, 775 (2012).

    Google Scholar 

  15. J. Biener, A. Wittstock, L.A. Zepeda-Ruiz, M.M. Biener, V. Zielasek, D. Kramer, R.N. Viswanath, J. Weissmüller, M. Bäumer, V. Hamza, Nat. Mater. 8, 47 (2009).

    Google Scholar 

  16. L.Y. Chen, J.S. Yu, T. Fujita, M.W. Chen, Adv. Funct. Mater. 19, 1221 (2009).

    Google Scholar 

  17. E.M. Bringa, J.D. Monk, A. Caro, A. Misra, L. Zepeda-Ruiz, M. Duchaineau, F. Abraham, M. Nastasi, S.T. Picraux, Y.Q. Wang, D. Farkas, Nano Lett. 12, 3351 (2012).

    Google Scholar 

  18. D. Farkas, A. Caro, E. Bringa, D. Crowson, Acta Mater. 61, 3249 (2013).

    Google Scholar 

  19. N.J. Briot, T.J. Balk, Philos. Mag. 95, 2955 (2015).

    Google Scholar 

  20. N.J. Briot, T. Kennerknecht, C. Eberl, T.J. Balk, Philos. Mag. 94, 847 (2014).

    Google Scholar 

  21. N. Badwe, X. Chen, K. Sieradzki, Acta Mater. 129, 251 (2017).

    Google Scholar 

  22. M.M. Biener, J. Biener, A. Wichmann, A. Wittstock, T.F. Baumann, M. Bäumer, A.V. Hamza, Nano Lett. 11, 3085 (2011).

    Google Scholar 

  23. M.M. Biener, J. Ye, T.F. Baumann, Y.M. Wang, S.J. Shin, J. Biener, A.V. Hamza, Adv. Mater. 26, 4808 (2014).

    Google Scholar 

  24. A. Wittstock, V. Zielasek, J. Biener, C.M. Friend, M. Baumer, Science 327, 319 (2010).

    Google Scholar 

  25. Y. Ito, Y. Tanabe, J. Han, T. Fujita, K. Tanigaki, M. Chen, Adv. Mater. 27, 4302 (2015).

    Google Scholar 

  26. T. Fujita, H. Okada, K. Koyama, K. Watanabe, S. Maekawa, M.W. Chen, Phys. Rev. Lett. 101, 166601 (2008).

    Google Scholar 

  27. S. Sun, X. Chen, N. Badwe, K. Sieradzki, Nat. Mater. 14, 894 (2015).

    Google Scholar 

  28. T. Wada, A.D. Setyawan, K. Yubuta, H. Kato, Scr. Mater. 65, 532 (2011).

    Google Scholar 

  29. J. Harrison, C. Wagner, Acta Metall. 7, 722 (1959).

    Google Scholar 

  30. I. McCue, S. Ryan, K. Hemker, X. Xu, N. Li, M. Chen, J. Erlebacher, Adv. Eng. Mater. 18, 46 (2016).

    Google Scholar 

  31. T. Wada, T. Ichitsubo, K. Yubuta, H. Segawa, H. Yoshida, H. Kato, Nano Lett. 14, 4505 (2014).

    Google Scholar 

  32. M.-S. Kim, H. Nishikawa, J. Mater. Sci. 48, 5645 (2013).

    Google Scholar 

  33. R. Zeis, T. Lei, K. Sieradzki, J. Snyder, J. Erlebacher, J. Catal. 253, 132 (2008).

    Google Scholar 

  34. J. Rugolo, J. Erlebacher, K. Sieradzki, Nat. Mater. 5, 946 (2006).

    Google Scholar 

  35. T. Fujita, L.H. Qian, K. Inoke, J. Erlebacher, M.W. Chen, Appl. Phys. Lett. 92, 90 (2008).

    Google Scholar 

  36. X.-L. Ye, N. Lu, X.-J. Li, K. Du, J. Tan, H.-J. Jin, J. Electrochem. Soc. 161, C517 (2014).

    Google Scholar 

  37. A.A. Vega, R.C. Newman, J. Electrochem. Soc. 161, C1 (2014).

    Google Scholar 

  38. J.M. Dona, J. Gonzalez-Velasco, J. Phys. Chem. 97, 4714 (1993).

    Google Scholar 

  39. J. González Velasco, Surf. Sci. 410, 283 (1998).

    Google Scholar 

  40. Y.C.K. Chen-Wiegart, S. Wang, W.K. Lee, I. McNulty, P.W. Voorhees, D.C. Dunand, Acta Mater. 61, 1118 (2013).

    Google Scholar 

  41. Y.C.K. Chen-Wiegart, S. Wang, I. McNulty, D.C. Dunand, Acta Mater. 61, 5561 (2013).

    Google Scholar 

  42. J. Snyder, J. Erlebacher, J. Electrochem. Soc. 157, C125 (2010).

    Google Scholar 

  43. M. Tai, A. Gentle, K. de Silva, M. Arnold, E. Lingen, M. Cortie, Metals (Basel) 5, 1197 (2015).

  44. S. Supansomboon, A. Porkovich, A. Dowd, M.D. Arnold, M.B. Cortie, ACS Appl. Mater. Interfaces 6, 9411 (2014).

    Google Scholar 

  45. C.A. Volkert, E.T. Lilleodden, D. Kramer, J. Weissmüller, Appl. Phys. Lett. 89, 61920 (2006).

    Google Scholar 

  46. Q. Chen, K. Sieradzki, Nat. Mater. 12, 1102 (2013).

    Google Scholar 

  47. J. Stuckner, K. Frei, I. McCue, M.J. Demkowicz, M. Murayama, Comput. Mater. Sci. 139, 320 (2017).

    Google Scholar 

  48. A.-A. El Mel, F. Boukli-Hacene, L. Molina-Luna, N. Bouts, A. Chauvin, D. Thiry, E. Gautron, N. Gautier, P.-Y. Tessier, ACS Appl. Mater. Interfaces 7, 2310 (2015).

    Google Scholar 

  49. T. Wada, H. Kato, Scr. Mater. 68, 723 (2013).

    Google Scholar 

  50. W. Liu, S. Zhang, N. Li, J. Zheng, S. An, G. Li, Int. J. Electrochem. Sci. 7, 7793 (2012).

    Google Scholar 

  51. L. Wang, T.J. Balk, Metall. Mater. Trans. A 45, 1096 (2014).

    Google Scholar 

  52. J.W. Kim, T. Wada, S.G. Kim, H. Kato, Mater. Lett. 116, 223 (2014).

    Google Scholar 

  53. L. Wang, T.J. Balk, Philos. Mag. Lett. 94, 573 (2014).

    Google Scholar 

  54. W.-C. Li, T.J. Balk, Materials (Basel) 2, 2496 (2009).

  55. J. Snyder, I. McCue, K. Livi, J. Erlebacher, J. Am. Chem. Soc. 134 (20), 8633 (2012).

    Google Scholar 

  56. M. Hakamada, J. Motomura, F. Hirashima, M. Mabuchi, Mater. Trans. 53, 524 (2012).

    Google Scholar 

  57. M.C. Dixon, T.A. Daniel, M. Hieda, D.M. Smilgies, M.H.W. Chan, D.L. Allara, Langmuir 23, 2414 (2007).

    Google Scholar 

  58. C.P. Flynn, J. Phys. Condens. Matter 18, S439 (2006).

    Google Scholar 

  59. F. Kertis, J. Snyder, L. Govada, S. Khurshid, N. Chayen, J. Erlebacher, JOM 62, 50 (2010).

    Google Scholar 

  60. Y.C.K. Chen-Wiegart, S. Wang, Y.S. Chu, W. Liu, I. McNulty, P.W. Voorhees, D.C. Dunand, Acta Mater. 60, 4972 (2012).

    Google Scholar 

  61. Z. Qi, J. Weissmüller, ACS Nano 7, 5948 (2013).

    Google Scholar 

  62. Y. Sun, T.J. Balk, Scr. Mater. 58, 727 (2008).

    Google Scholar 

  63. C.-L. Park, P.W. Voorhees, K. Thornton, Acta Mater. 90, 182 (2015).

    Google Scholar 

  64. J. Erlebacher, Phys. Rev. Lett. 106, 225504 (2011).

    Google Scholar 

  65. S. Parida, D. Kramer, C.A. Volkert, H. Rosner, J. Erlebacher, J. Weissmueller, Phys. Rev. Lett. 97, 035504 (2006).

    Google Scholar 

  66. J. Erlebacher, I. McCue, Acta Mater. 60, 6164 (2012).

    Google Scholar 

  67. D.M. Artymowicz, K. Sieradzki, R.C. Newman, ECS Trans. 53, 15 (2013).

    Google Scholar 

  68. S.A. Policastro, J.C. Carnahan, G. Zangari, H. Bart-Smith, E. Seker, M.R. Begley, M.L. Reed, P.F. Reynolds, R.G. Kelly, J. Electrochem. Soc. 157, C328 (2010).

    Google Scholar 

  69. R. Newman, S. Corcoran, J. Erlebacher, M.J. Aziz, K. Sieradzki, MRS Bull. 24, 24 (1999).

    Google Scholar 

  70. K. Sieradzki, R.R. Corderman, K. Shukla, R.C. Newman, Philos. Mag. 59, 713 (1989).

    Google Scholar 

  71. D.M. Artymowicz, J. Erlebacher, R.C. Newman, Philos. Mag. 89, 1663 (2009).

    Google Scholar 

  72. C. Eilks, C.M. Elliott, J. Comput. Phys. 227, 9727 (2008).

    Google Scholar 

  73. J. Guyer, W. Boettinger, J. Warren, G. McFadden, Phys. Rev. E 69, 021603 (2004).

    Google Scholar 

  74. J. Guyer, W. Boettinger, J. Warren, G. McFadden, Phys. Rev. E 69, 021604 (2004).

    Google Scholar 

  75. W. Boettinger, J. Warren, C. Beckermann, A. Karma, Annu. Rev. Mater. Res. 32, 163 (2002).

    Google Scholar 

  76. H. Kobayashi, M. Ode, S. Gyoon Kim, W. Tae Kim, T. Suzuki, Scr. Mater. 48, 689 (2003).

    Google Scholar 

  77. B. Nestler, H. Garcke, B. Stinner, Phys. Rev. E 71, 041609 (2005).

    Google Scholar 

  78. I. Steinbach, Model. Simul. Mater. Sci. Eng. 17, 073001 (2009).

    Google Scholar 

  79. K. Jackson, J. Hunt, Trans. Metall. Soc. AIME 236, 1129 (1966).

    Google Scholar 

  80. J. Dantzig, M. Rappaz, Solidification (EPFL Press, Lausanne, Switzerland, 2009).

  81. Q. Chen, K. Sieradzki, J. Electrochem. Soc. 160, C226 (2013).

    Google Scholar 

Download references

Acknowledgements

J.E. acknowledges support from the National Science Foundation DMR Program under Grant DMR-1402726. A.K. acknowledges support from Grant DEFG02–07ER46400 from the US Department of Energy, Office of Basic Energy Sciences. We thank B. Gaskey for technical contributions to this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ian McCue.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

McCue, I., Karma, A. & Erlebacher, J. Pattern formation during electrochemical and liquid metal dealloying. MRS Bulletin 43, 27–34 (2018). https://doi.org/10.1557/mrs.2017.301

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/mrs.2017.301

Navigation