Skip to main content
Log in

Nanoporous metals by alloy corrosion: Bioanalytical and biomedical applications

  • Dealloyed Nanoporous Materials with Interface-Controlled Behavior
  • Published:
MRS Bulletin Aims and scope Submit manuscript

Abstract

Nanoporous metals obtained by dealloying have attracted significant attention for their unusual catalytic properties, and as model materials for fundamental studies of structure–property relationships in a variety of research areas. There has been a recent surge in the use of these metals for biomedical and bioanalytical applications, where many exciting opportunities exist. The goal of this article is to provide a review of recent progress in using nanoporous metals for biological applications, including as biosensors for detecting biomarkers of disease and multifunctional neural interfaces for monitoring and modulating the activity of neural tissue. The article emphasizes the unique properties of nanoporous gold and concludes by discussing its utility in addressing important challenges in biomedical devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. C. Wu, H. Sun, Y. Li, X. Liu, X. Du, X. Wang, P. Xu, Biosens. Bioelectron. 66, 350 (2015).

    Google Scholar 

  2. U. Salaj-Kosla, S. Pöller, Y. Beyl, M. Scanlon, S. Beloshapkin, S. Shleev, W. Schuhmann, E. Magner, Electrochem. Commun. 16, 92 (2012).

    Google Scholar 

  3. G. Sanzó, I. Taurino, R. Antiochia, L. Gorton, G. Favero, F. Mazzei, G. De Micheli, S. Carrara, Bioelectrochemistry 112, 125 (2016).

    Google Scholar 

  4. X. Yan, X. Wang, P. Zhao, Y. Zhang, P. Xu, Y. Ding, Microporous Mesoporous Mater. 161, 1 (2012).

    Google Scholar 

  5. X. Xiao, H. Li, M. Wang, K. Zhang, P. Si, Analyst 139, 488 (2014).

    Google Scholar 

  6. H. Qiu, C. Xu, X. Huang, Y. Ding, Y. Qu, P. Gao, J. Phys. Chem. C 112, 14781 (2008).

    Google Scholar 

  7. U. Salaj-Kosla, M.D. Scanlon, T. Baumeister, K. Zahma, R. Ludwig, P.Ó. Conghaile, D. MacAodha, D. Leech, E. Magner, Anal. Bioanal. Chem. 405, 3823 (2013).

    Google Scholar 

  8. T. Siepenkoetter, U. Salaj-Kosla, E. Magner, ChemElectroChem 4, 905 (2017).

    Google Scholar 

  9. H. Qiu, C. Xu, X. Huang, Y. Ding, Y. Qu, P. Gao, J. Phys. Chem. C 113, 2521 (2009).

    Google Scholar 

  10. P. Daggumati, S. Appelt, Z. Matharu, M. Marco, E. Seker, J. Am. Chem. Soc. 138, 7711 (2016).

    Google Scholar 

  11. L. Zhang, H. Chang, A. Hirata, H. Wu, Q.-K. Xue, M. Chen, ACS Nano 7, 4595 (2013).

    Google Scholar 

  12. H. Fan, Z. Guo, L. Gao, Y. Zhang, D. Fan, G. Ji, B. Du, Q. Wei, Biosens. Bioelectron. 64, 51 (2015).

    Google Scholar 

  13. X. Li, R. Wang, X. Zhang, Microchim. Acta 172, 285 (2011).

    Google Scholar 

  14. A.J. Alla, F.B. d’Andrea, J.K. Bhattarai, J.A. Cooper, Y.H. Tan, A.V. Demchenko, K.J. Stine, J. Chromatogr. 1423, 19 (2015).

    Google Scholar 

  15. C. Ding, H. Li, K. Hu, J.-M. Lin, Talanta 80, 1385 (2010).

    Google Scholar 

  16. H.-J. Qiu, G.-P. Zhou, G.-L. Ji, Y. Zhang, X.-R. Huang, Y. Ding, Colloids Surf. B 69, 105 (2009).

    Google Scholar 

  17. J. Patel, L. Radhakrishnan, B. Zhao, B. Uppalapati, R.C. Daniels, K.R. Ward, M.M. Collinson, Anal. Chem. 85, 11610 (2013).

    Google Scholar 

  18. F. Yu, S. Ahl, A.M. Caminade, J.P. Majoral, W. Knoll, J. Erlebacher, Anal. Chem. 78, 7346 (2006).

    Google Scholar 

  19. X. Lang, L. Qian, P. Guan, J. Zi, M. Chen, Appl. Phys. Lett. 98, 093701 (2011).

    Google Scholar 

  20. J. Biener, G.W. Nyce, A.M. Hodge, M.M. Biener, A.V. Hamza, S.A. Maier, Adv. Mater. 20, 1211 (2008).

    Google Scholar 

  21. L.H. Qian, X.Q. Yan, T. Fujita, A. Inoue, M.W. Chen, Appl. Phys. Lett. 90, 153120 (2007).

    Google Scholar 

  22. F. Zhao, J. Zeng, M.M. Parvez Arnob, P. Sun, J. Qi, P. Motwani, M. Gheewala, C.H. Li, A. Paterson, U. Strych, B. Raja, R.C. Willson, J.C. Wolfe, T.R. Lee, W.C. Shih, Nanoscale 6, 8199 (2014).

    Google Scholar 

  23. J.S. Wi, S. Tominaka, K. Uosaki, T. Nagao, Phys. Chem. Chem. Phys. 14, 9131 (2012).

    Google Scholar 

  24. J. Zeng, F. Zhao, M. Li, C.-H. Li, T.R. Lee, W.-C. Shih, J. Mater. Chem. C 3, 247 (2015).

    Google Scholar 

  25. H. Wang, J. Kundu, N.J. Halas, Angew. Chem. Int. Ed. Engl. 46, 9040 (2007).

    Google Scholar 

  26. L. Zhang, Y. Song, T. Fujita, Y. Zhang, M. Chen, T.H. Wang, Adv. Mater. 26, 1289 (2014).

    Google Scholar 

  27. W.C. Shih, G.M. Santos, F. Zhao, O. Zenasni, M.M. Arnob, Nano Lett. 16, 4641 (2016).

    Google Scholar 

  28. D.A. McCurry, R.C. Bailey, J. Phys. Chem. C 120, 20929 (2016).

    Google Scholar 

  29. Y.H. Tan, K. Fujikawa, P. Pornsuriyasak, A.J. Alla, N.V. Ganesh, A.V. Demchenko, K.J. Stine, New J. Chem. 37, 2150 (2013).

    Google Scholar 

  30. A.M. Hafez, B.W. Wenclawiak, Anal. Bioanal. Chem. 405, 1753 (2013).

    Google Scholar 

  31. C.A.R. Chapman, N. Goshi, E. Seker, Adv. Funct. Mater. (2017), doi: 10.1002/adfm.201703523.

  32. C.A.R. Chapman, L. Wang, H. Chen, J. Garrison, P.J. Lein, E. Seker, Adv. Funct. Mater. 27, 1604631 (2017).

    Google Scholar 

  33. Y.H. Kim, G.H. Kim, A.Y. Kim, Y.H. Han, M.-A. Chung, S.-D. Jung, J. Neural Eng. 12, 066029 (2015).

    Google Scholar 

  34. Y.H. Tan, S.E. Terrill, G.S. Paranjape, K.J. Stine, M.R. Nichols, Biomater. Sci. 2, 110 (2014).

    Google Scholar 

  35. O. Polat, E. Seker, J. Phys. Chem. C 119, 24812 (2015).

    Google Scholar 

  36. G.M. Santos, F. Zhao, J. Zeng, W.-C. Shih, Nanoscale 6, 5718 (2014).

    Google Scholar 

  37. S. Gittard, B. Pierson, C. Ha, C. Wu, R. Narayan, D. Robinson, Biotechnol. J. (2010).

  38. E. Seker, Y. Berdichevsky, K.J. Staley, M.L. Yarmush, Adv. Healthc. Mater. 1, 172 (2012).

    Google Scholar 

  39. Y. Xue, J. Markmann, H. Duan, J. Weissmüller, P. Huber, Nat. Commun. 5, 4237 (2014).

    Google Scholar 

  40. K. Liu, Y. Bai, L. Zhang, Z. Yang, Q. Fan, H. Zheng, Y. Yin, C. Gao, Nano Lett. 16, 3675 (2016).

    Google Scholar 

  41. D. Wang, P. Schaaf, J. Mater. Chem. 22, 5344 (2012).

    Google Scholar 

  42. Z. Liu, P. Searson, J. Phys. Chem. B 110, 4318 (2006).

    Google Scholar 

  43. A. Chauvin, N. Stephant, K. Du, J. Ding, I. Wathuthanthri, C.-H. Choi, P.-Y. Tessier, A.-A. El Mel, Micromachines 8, 168 (2017).

    Google Scholar 

Download references

Acknowledgements

E.S. acknowledges support from the National Science Foundation (CBET-1512745 and CBET&DMR-1454426). W.-C.S. acknowledges support from the National Science Foundation (CBET-1605683, CBET-1151154) and NASA (NNX12AQ44G). K.J.S. acknowledges support from the National Institutes of Health (NIGMS R01-GM111835).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Erkin Şeker.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Şeker, E., Shih, WC. & Stine, K.J. Nanoporous metals by alloy corrosion: Bioanalytical and biomedical applications. MRS Bulletin 43, 49–56 (2018). https://doi.org/10.1557/mrs.2017.298

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/mrs.2017.298

Navigation