Skip to main content
Log in

DNA origami: The bridge from bottom to top

  • DNA Nanotechnology: A Foundation for Programmable Nanoscale Materials
  • Published:
MRS Bulletin Aims and scope Submit manuscript

Abstract

Over the last decade, DNA origami has matured into one of the most powerful bottom-up nanofabrication techniques. It enables both the fabrication of nanoparticles of arbitrary two-dimensional or three-dimensional shapes, and the spatial organization of any DNA-linked nanomaterial, such as carbon nanotubes, quantum dots, or proteins at ∼5-nm resolution. While widely used within the DNA nanotechnology community, DNA origami has yet to be broadly applied in materials science and device physics, which now rely primarily on top-down nanofabrication. In this article, we first introduce DNA origami as a modular breadboard for nanomaterials and then present a brief survey of recent results demonstrating the unique capabilities created by the combination of DNA origami with existing top-down techniques. Emphasis is given to the open challenges associated with each method, and we suggest potential next steps drawing inspiration from recent work in materials science and device physics. Finally, we discuss some near-term applications made possible by the marriage of DNA origami and top-down nanofabrication.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. S.Y. Wu, C.Y. Lin, M.C. Chiang, J.J. Liaw, J.Y. Cheng, S.H. Yang, C.H. Tsai, P.N. Chen, T. Miyashita, C.H. Chang, V.S. Chang, K.H. Pan, J.H. Chen, Y.S. Mor, K.T. Lai, C.S. Liang, H.F. Chen, S.Y. Chang, C.J. Lin, C.H. Hsieh, R.F. Tsui, C.H. Yao, C.C. Chen, R. Chen, C.H. Lee, H.J. Lin, C.W. Chang, K.W. Chen, M.H. Tsai, K.S. Chen, Y. Ku, S.M. Jang, IEDM Tech. Dig. 2.6.1–2.6.4 (2017), https://doi. org/10.1109/IEDM.2016.7838333.

  2. Y. Xia, G.M. Whitesides, Annu. Rev. Mater. Sci. 28, 1 (2015).

    Google Scholar 

  3. J. Zhang, Y. Li, X. Zhang, B. Yang, Adv. Mater. 22, 4249 (2010).

    Article  CAS  Google Scholar 

  4. N.C. Seeman, Annu. Rev. Biochem. 79, 65 (2010).

    Article  CAS  Google Scholar 

  5. P.W.K. Rothemund, Nature 440, 297 (2006).

    Article  CAS  Google Scholar 

  6. F. Praetorius, B. Kick, K.L. Behler, M.N. Honemann, D. Weuster-Botz, H. Dietz, Nature (forthcoming).

  7. K. Keren, M. Krueger, R. Gilad, G. Ben-Yoseph, U. Sivan, E. Braun. Science 297, 72 (2002).

    Article  Google Scholar 

  8. H. Yan, S.H. Park, G. Finkelstein, J.H. Reif, T.H. LaBean, Science 301, 1882 (2003).

    Article  CAS  Google Scholar 

  9. F.N. Gürr, F.W. Schwarz, J. Ye, S. Diez, T.L. Schmidt, ACS Nano 10, 5374 (2016).

    Article  CAS  Google Scholar 

  10. J. Liu, Y. Geng, E. Pound, S. Gyawali, J.R. Ashton, J. Hickey, A.T. Woolley, J.N. Harb, ACS Nano 5, 2240 (2011).

    Article  CAS  Google Scholar 

  11. J.B. Knudsen, L. Liu, A.L.B. Kodal, M. Madsen, Q. Li, J. Song, J.B. Woehrstein, S.F.J. Wickham, M.T. Strauss, F. Schueder, J. Vinther, A. Krissanaprasit, D. Gudnason, A. Allen, A. Smith, R. Ogaki, A.N. Zelikin, F. Besenbacher, V. Birkedal, P. Yin, W.M. Shih, R. Jungmann, M. Dong, K.V. Gothelf, Nat. Nanotechnol. 10, 892 (2015).

    Article  CAS  Google Scholar 

  12. H.T. Maune, S.-P. Han, R.D. Barish, M. Bockrath, W.A. Goddard III, P.W.K. Rothemund, E. Winfree, Nat. Nanotechnol. 5, 61 (2010).

    Article  CAS  Google Scholar 

  13. S.H. Ko, G.M. Gallatin, J.A. Liddle, Adv. Funct. Mater. 22, 1015 (2012).

    Article  CAS  Google Scholar 

  14. N.V. Voigt, T. Tørring, A. Rotaru, M.F. Jacobsen, J.B. Ravnsbæk, R. Subramani, W. Mamdouh, J. Kjems, A. Mokhir, F. Besenbacher, K.V. Gothelf. Nat. Nanotechnol. 5, 200 (2010).

    Article  CAS  Google Scholar 

  15. A. Kuzyk, R. Schreiber, H. Zhang, A.O. Govorov, T. Liedl, N. Liu, Nat. Mater. 13, 862 (2014).

    Article  CAS  Google Scholar 

  16. E.-M. Roller, L.V. Besteiro, C. Pupp, L.K. Khorashad, A.O. Govorov, T. Liedl, Nat. Phys. 13, 761 (2017), doi:10.1038/nphys4120.

  17. M. Pilo-Pais, G.P. Acuna, P. Tinnerfeld, T. Liedl, MRS Bull. 42 (12), 936 (2017).

    Article  CAS  Google Scholar 

  18. T. Zhang, N. Gao, S. Li, M.J. Lang, Q.-H. Xu, J. Phys. Chem. Lett. 6, 2043 (2015).

    Article  CAS  Google Scholar 

  19. G.P. Acuna, F.M. Möller, P. Holzmeister, S. Beater, B. Lalkens, P. Tinnefeld, Science 338, 506 (2012).

    Article  CAS  Google Scholar 

  20. J.R. Burns, E. Stulz, S. Howorka, Nano Lett. 13, 2351 (2013).

    Article  CAS  Google Scholar 

  21. J.J. Funke, H. Dietz, Nat. Nanotechnol. 11, 47 (2016).

    Article  CAS  Google Scholar 

  22. A. Gopinath, P.W.K. Rothemund, ACS Nano 8, 12030 (2014).

    Article  CAS  Google Scholar 

  23. I. Gállego, M.A. Grover, N.V. Hud, Angew. Chem. Int. Ed. Engl. 54 6765 (2015).

    Article  CAS  Google Scholar 

  24. N. Ponnuswamy, M.M.C. Bastings, B. Nathwani, J.H. Ryu, L.Y.T. Chou, M. Vinther, Nat. Commun. 8, 15654 (2017).

    Article  CAS  Google Scholar 

  25. N.P. Agarwal, M. Matthies, F.N. Gür, K. Osada, T.L. Schmidt, Angew. Chem. Int. Ed. Engl. 56, 5460 (2017).

    Article  CAS  Google Scholar 

  26. Y. Cui, M.T. Björk, J.A. Liddle, C. Sönnichsen, B. Boussert, A.P. Alivisatos, Nano Lett. 4, 1093 (2004).

    Article  CAS  Google Scholar 

  27. A.E. Gerdon, S.S. Oh, K. Hsieh, Y. Ke, H. Yan, H.T. Soh, Small 5, 1942 (2009).

    Article  CAS  Google Scholar 

  28. B. Ding, H. Wu, W. Xu, Z. Zhao, Y. Liu, H. Yu, H. Yan, Nano Lett. 10, 5065 (2010).

    Article  CAS  Google Scholar 

  29. R.J. Kershner, L.D. Bozano, C.M. Micheel, A.M. Hung, A.R. Fornof, J.N. Cha, C.T. Rettner, M. Bersani, J. Frommer, P.W.K. Rothemund, G.M. Wallraff, Nat. Nanotechnol. 4, 557 (2009).

    Article  CAS  Google Scholar 

  30. A. Gopinath, E. Miyazono, A. Faraon, P.W.K. Rothemund, Nature 535, 401 (2016).

    Article  CAS  Google Scholar 

  31. J.E. Martin, J.P. Wilcoxon, J. Odinek, P. Provencio, J. Phys. Chem. B 104, 9475 (2000).

    Article  CAS  Google Scholar 

  32. T. Wilk, S.C. Webster, A. Kuhn, G. Rempe, Science (80-) 317, 488 (2007).

    Article  CAS  Google Scholar 

  33. M. Fuechsle, J.A. Miwa, S. Mahapatra, H. Ryu, S. Lee, O. Warschkow, L.C.L. Hollenberg, G. Klimeck, M.Y. Simmons, Nat. Nanotechnol. 7, 242 (2012).

    Article  CAS  Google Scholar 

  34. S.P. Surwade, S. Zhao, H. Liu, J. Am. Chem. Soc. 133, 11868 (2011).

    Article  CAS  Google Scholar 

  35. C.T. Diagne, C. Brun, D. Gasparutto, X. Baillin, R. Tiron, ACS Nano 10, 6458 (2016).

    Article  CAS  Google Scholar 

  36. S.P. Surwade, F. Zhou, B. Wei, W. Sun, A. Powell, C. O’Donnell, P. Yin, H. Liu, J. Am. Chem. Soc. 135, 6778 (2013).

    Article  CAS  Google Scholar 

  37. R. Schreiber, S. Kempter, S. Holler, V. Schüller, D. Schiffels, S.S. Simmel, P.C. Nickels, T. Liedl, Small 7, 1795 (2011).

    Article  CAS  Google Scholar 

  38. S.P. Surwade, F. Zhou, Z. Li, A. Powell, C. O’Donnella, H. Liu, Chem. Commun. 52, 1677 (2016).

    Article  CAS  Google Scholar 

  39. K. Busuttil, A. Rotaru, M. Dong, F. Besenbachera, K.V. Gothelf, Chem. Commun. 49, 1927 (2013).

    Article  CAS  Google Scholar 

  40. C. Tian, H. Kim, W. Sun, Y. Kim, P. Yin, H. Liu, ACS Nano 11, 227 (2017).

    Article  CAS  Google Scholar 

  41. K. Busuttil, A. Rotaru, M. Dong, F. Besenbacher, K.V. Gothelf, Chem. Commun. (Camb.) 49, 1927 (2013).

  42. Y. Tokura, Y. Jiang, A. Welle, M.H. Stenzel, K.M. Krzemien, J. Michaelis, R. Berger, C. Barner-Kowollik, Y. Wu, T. Weil, Angew. Chem. Int. Ed. Engl. 55, 5692 (2016).

    Article  CAS  Google Scholar 

  43. E.H. Discekici, C.W. Pester, N.J. Treat, J. Lawrence, K.M. Mattson, B. Narupai, E.P. Toumayan, Y. Luo, A.J. McGrath, P.G. Clark, J.R. de Alaniz, C.J. Hawker, ACS Macro Lett. 5, 258 (2016).

    Article  CAS  Google Scholar 

  44. Z. Huang, N. Geyer, P. Werner, J. De Boor, U. Gösele, Adv. Mater. 23, 285 (2011).

    Article  CAS  Google Scholar 

  45. Z. Sun, Z. Yan, J. Yao, E. Beitler, Y. Zhu, J.M. Tour, Nature 468, 549 (2010).

    Article  CAS  Google Scholar 

  46. F. Zhou, W. Sun, K.B. Ricardo, D. Wang, J. Shen, P. Yin, H. Liu, ACS Nano 10, 3069 (2016).

    Article  CAS  Google Scholar 

  47. S.L. Lee, K-N. Chen, J.J-Q. Lu, J. Microelectromech. Syst. 20, 885 (2011).

    Article  Google Scholar 

  48. N. Yu, F. Capasso, Nat. Mater. 13, 139 (2014).

    Article  CAS  Google Scholar 

  49. K.E. Chong, B. Hopkins, I. Staude, A.E. Miroshnichenko, J. Dominguez, M. Decker, D.N. Neshev, I. Brener, Y.S. Kivshar, Small 10, 1985 (2014).

    Article  CAS  Google Scholar 

  50. H. Yan, T. Low, F. Guinea, F. Xia, P. Avouris, Nano Lett. 14, 4581 (2014).

    Article  CAS  Google Scholar 

  51. Z. Fang, Y. Wang, A.E. Schlather, Z. Liu, P.M. Ajayan, F.J. García de Abajo, P. Nordlander, X. Zhu, N.J. Halas, Nano Lett. 14, 299 (2014).

    Article  CAS  Google Scholar 

  52. S. Zhang, Y. Chen, Sci. Rep. 5, 16637 (2015).

    Article  CAS  Google Scholar 

  53. G. Tikhomirov, P. Petersen, L. Qian, Nat. Nanotechnol. 12, 251 (2017).

    Article  CAS  Google Scholar 

  54. W. Liu, H. Zhong, R. Wang, N.C. Seeman, Angew. Chem. Int. Ed. Engl. 50, 264 (2011).

    Article  CAS  Google Scholar 

  55. Y. Suzuki, M. Endo, H. Sugiyama, Nat. Commun. 6, 8052 (2015).

    Article  CAS  Google Scholar 

  56. S. Woo, P.W.K. Rothemund, Nat. Chem. 3, 620 (2011).

    Article  CAS  Google Scholar 

  57. A. Rafat, T. Pirzer, M.B. Scheible, A. Kostina, F.C. Simmel, Angew. Chem. Int. Ed. Engl. 53, 7665 (2014).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

A.G. acknowledges support from the Office of Naval Research Award N000141410702, National Science Foundation Grant Nos. 1636364 and 1317694 (Expedition in Computing, Molecular Programming Project, http://molecular-programming.org. A.T.W. acknowledges support from the NSF CMMI Grant 1562729. M.A.K. acknowledges the Academy of Finland (Project Number 308578). H.L acknowledges support from the Office of Naval Research Award N000141512520.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anqin Xu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, A., Harb, J.N., Kostiainen, M.A. et al. DNA origami: The bridge from bottom to top. MRS Bulletin 42, 943–950 (2017). https://doi.org/10.1557/mrs.2017.275

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/mrs.2017.275

Navigation