Skip to main content
Log in

Mechanisms and theoretical simulations of the catalytic growth of nanocarbons

  • Catalysts for Nanocarbon Growth
  • Published:
MRS Bulletin Aims and scope Submit manuscript

Abstract

Nanocarbons have been catalytically grown since 1993. However, even today, the formation mechanisms of carbon nanotubes (CNTs) and graphene are not sufficiently understood. This sustained challenge has been an engine for the development in theory concepts and computational methods, tackling the problem of well-controlled production of these nanomaterials. This article discusses how experimental discoveries and theoretical approaches evolved hand-in-hand for the successful understanding of challenging issues, highlighting parallels and distinctions between graphene and CNTs. Key aspects include the mechanisms of nucleation and CNT-liftoff, chiral symmetry selection and control, rates of growth and island shapes, mechanisms defining single chirality of the nanotubes, and ways to suppress grain boundaries in the quest for ever larger and faster growing single-crystal graphene, or longest defect-free CNTs. The theme of catalyst chemistry and structure, either as a nanoparticle or a planar substrate, is traced through the stages of nanocarbon formation, with focus on theoretically generalizable findings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. S.M. Bachilo, L. Balzano, J.E. Herrera, F. Pompeo, D.E. Resasco, R.B. Weisman, J. Am. Chem. Soc. 125, 11186 (2003).

    Article  CAS  Google Scholar 

  2. W.-H. Chiang, R.M. Sankaran, Nat Mater. 8, 882 (2009).

    Article  CAS  Google Scholar 

  3. W.-H. Chiang, M. Sakr, X.P.A. Gao, R.M. Sankaran, ACS Nano 3, 4023 (2009).

    Article  CAS  Google Scholar 

  4. A.-C. Dupuis, Prog. Mater. Sci. 50, 929 (2005).

    Article  CAS  Google Scholar 

  5. V. Jourdain, C. Bichara, Carbon 58, 2 (2013).

    Article  CAS  Google Scholar 

  6. T. Bligaard, J.K. Nørskov, S. Dahl, J. Matthiesen, C.H. Christensen, J. Sehested, J. Catal. 224, 206 (2004).

    Article  CAS  Google Scholar 

  7. F. Abild-Pedersen, J. Greeley, F. Studt, J. Rossmeisl, T.R. Munter, P.G. Moses, E. Skúlason, T. Bligaard, J.K. Nørskov, Phys. Rev. Lett. 99, 016105 (2007).

    Article  CAS  Google Scholar 

  8. J.K. Nørskov, T. Bligaard, A. Logadottir, S. Bahn, L.B. Hansen, M. Bollinger, H. Bengaard, B. Hammer, Z. Sljivancanin, M. Mavrikakis, Y. Xu, S. Dahl, C.J.H. Jacobsen, J. Catal. 209, 275 (2002).

    Article  CAS  Google Scholar 

  9. J. Robertson, J. Mater. Chem. 22, 19858 (2012).

    Article  CAS  Google Scholar 

  10. E.S. Penev, V.I. Artyukhov, B.I. Yakobson, ACS Nano 8, 1899 (2014).

    Article  CAS  Google Scholar 

  11. E. Pigos, E.S. Penev, M.A. Ribas, R. Sharma, B.I. Yakobson, A.R. Harutyunyan, ACS Nano 5, 10096 (2011).

    Article  CAS  Google Scholar 

  12. V.L. Kuznetsov, A.N. Usoltseva, A.L. Chuvilin, E.D. Obraztsova, J.-M. Bonard, Phys. Rev. B Condens. Matter 64, 235401 (2001).

    Article  CAS  Google Scholar 

  13. M. Luo, E.S. Penev, A.R. Harutyunyan, B.I. Yakobson, J. Phys. Chem. C 121, 18789 (2017).

    Article  CAS  Google Scholar 

  14. J.A. Elliott, Y. Shibuta, H. Amara, C. Bichara, E.C. Neyts, Nanoscale 5, 6662 (2013).

    Article  CAS  Google Scholar 

  15. H. Amara, C. Bichara, Top. Curr. Chem. 375, 55 (2017).

    Article  CAS  Google Scholar 

  16. D. Frenkel, B. Smit, Understanding Molecular Simulation: From Algorithms to Applications (Academic Press, San Diego, 2002).

  17. D.P. Landau, K. Binder, A Guide to Monte Carlo Simulations in Statistical Physics (Cambridge University Press, Cambridge, 2014).

  18. C.M. Goringe, D.R. Bowler, E. Hernández, Rep. Prog. Phys. 60, 1447 (1997).

    Article  Google Scholar 

  19. R.M. Dreizler, E.K.U. Gross, Density Functional Theory: An Approach to the Quantum Many-Body Problem (Springer, Berlin, 1996).

  20. E.C. Neyts, Y. Shibuta, A.C.T. van Duin, A. Bogaerts, ACS Nano 4, 6665 (2010).

    Article  CAS  Google Scholar 

  21. C.C. Battaile, D.J. Srolovitz, Annu. Rev. Mater. Res. 32, 297 (2002).

    Article  CAS  Google Scholar 

  22. A. Zangwill, D.D. Vvedensky, Nano Lett. 11, 2092 (2011).

    Article  CAS  Google Scholar 

  23. M. Grujicic, G. Cao, B. Gersten, Mater. Sci. Eng. B 94, 247 (2002).

    Article  Google Scholar 

  24. H. Amara, C. Bichara, F. Ducastelle, Phys. Rev. Lett. 100, 056105 (2008).

    Article  CAS  Google Scholar 

  25. M. Diarra, A. Zappelli, H. Amara, F. Ducastelle, C. Bichara, Phys. Rev. Lett. 109, 185501 (2012).

    Article  CAS  Google Scholar 

  26. Y. Magnin, A. Zappelli, H. Amara, F. Ducastelle, C. Bichara, Phys. Rev. Lett. 115, 205502 (2015).

    Article  CAS  Google Scholar 

  27. J. Gao, J. Yip, J. Zhao, B.I. Yakobson, F. Ding, J. Am. Chem. Soc. 133, 5009 (2011).

    Article  CAS  Google Scholar 

  28. Y. Hao, M.S. Bharathi, L. Wang, Y. Liu, H. Chen, S. Nie, X. Wang, H. Chou, C. Tan, B. Fallahazad, H. Ramanarayan, C.W. Magnuson, E. Tutuc, B.I. Yakobson, K.F. McCarty, Y.-W. Zhang, P. Kim, J. Hone, L. Colombo, R.S. Ruoff, Science 342, 720 (2013).

    Article  CAS  Google Scholar 

  29. X. Li, C.W. Magnuson, A. Venugopal, R.M. Tromp, J.B. Hannon, E.M. Vogel, L. Colombo, R.S. Ruoff, J. Am. Chem. Soc. 133, 2816 (2011).

    Article  CAS  Google Scholar 

  30. H. Zhou, W.J. Yu, L. Liu, R. Cheng, Y. Chen, X. Huang, Y. Liu, Y. Wang, Y. Huang, X. Duan, Nat. Commun. 4 (2013), doi:10.1038/ncomms3096.

  31. X. Chen, P. Zhao, R. Xiang, S. Kim, J. Cha, S. Chiashi, S. Maruyama, Carbon 94, 810 (2015).

    Article  CAS  Google Scholar 

  32. T. Wu, X. Zhang, Q. Yuan, J. Xue, G. Lu, Z. Liu, H. Wang, H. Wang, F. Ding, Q. Yu, X. Xie, M. Jiang, Nat. Mater. 15, 43 (2016).

    Article  CAS  Google Scholar 

  33. B. Wang, X. Ma, M. Caffio, R. Schaub, W.-X. Li, Nano Lett. 11, 424 (2011).

    Article  CAS  Google Scholar 

  34. Q. Yuan, J. Gao, H. Shu, J. Zhao, X. Chen, F. Ding, J. Am. Chem. Soc. 134, 2970 (2012).

    Article  CAS  Google Scholar 

  35. X. Wang, Q. Yuan, J. Li, F. Ding, Nanoscale 9, 11584 (2017).

    Article  Google Scholar 

  36. X. Xu, Z. Zhang, L. Qiu, J. Zhuang, L. Zhang, H. Wang, C. Liao, H. Song, R. Qiao, P. Gao, Z. Hu, L. Liao, Z. Liao, D. Yu, E. Wang, F. Ding, H. Peng, K. Liu, Nat. Nanotechnol. 11, 930 (2016).

    Article  CAS  Google Scholar 

  37. L. Gao, W. Ren, H. Xu, L. Jin, Z. Wang, T. Ma, L.-P. Ma, Z. Zhang, Q. Fu, L.-M. Peng, X. Bao, H.-M. Cheng, Nat. Commun. 3 (2012), doi:10.1038/ncomms1702.

  38. D. Geng, B. Wu, Y. Guo, L. Huang, Y. Xue, J. Chen, G. Yu, L. Jiang, W. Hu, Y. Liu, Proc. Natl. Acad. Sci. U.S.A. 109, 7992 (2012).

    Article  Google Scholar 

  39. V.I. Artyukhov, Y. Hao, R.S. Ruoff, B.I. Yakobson, Phys. Rev. Lett. 114, 115502 (2015).

    Article  CAS  Google Scholar 

  40. X. Xu, Z. Zhang, J. Dong, D. Yi, J. Niu, M. Wu, L. Lin, R. Yin, M. Li, J. Zhou, S. Wang, J. Sun, X. Duan, P. Gao, Y. Jiang, X. Wu, H. Peng, R.S. Ruoff, Z. Liu, D. Yu, E. Wang, F. Ding, K. Liu, Sci. Bull. 62, 1074 (2017).

    Article  CAS  Google Scholar 

  41. V.I. Artyukhov, Y. Liu, B.I. Yakobson, Proc. Natl. Acad. Sci. U.S.A. 109, 15136 (2012).

    Article  Google Scholar 

  42. T. Ma, W. Ren, X. Zhang, Z. Liu, Y. Gao, L.-C. Yin, X.-L. Ma, F. Ding, H.-M. Cheng, Proc. Natl. Acad. Sci. U.S.A. 110, 20386 (2013).

    Article  CAS  Google Scholar 

  43. X. Zhang, Z. Xu, L. Hui, J. Xin, F. Ding, J. Phys. Chem. Lett. 3, 2822 (2012).

    Article  CAS  Google Scholar 

  44. R.F. Sekerka, Cryst. Res. Technol. 40, 291 (2005).

    Article  CAS  Google Scholar 

  45. R. Rao, D. Liptak, T. Cherukuri, B.I. Yakobson, B. Maruyama, Nat. Mater. 11, 213 (2012).

    Article  CAS  Google Scholar 

  46. V.L. Nguyen, B.G. Shin, D.L. Duong, S.T. Kim, D. Perello, Y.J. Lim, Q.H. Yuan, F. Ding, H.Y. Jeong, H.S. Shin, S.M. Lee, S.H. Chae, Q.A. Vu, S.H. Lee, Y.H. Lee, Adv. Mater. 27, 1376 (2015).

    Article  CAS  Google Scholar 

  47. Q. Yuan, B.I. Yakobson, F. Ding, J. Phys. Chem. Lett. 5, 3093 (2014).

    Article  CAS  Google Scholar 

  48. Q. Yuan, G. Song, D. Sun, F. Ding, Sci. Rep. 4 (2014), doi: 10.1038/srep06541.

  49. J. Dong, H. Wang, H. Peng, Z. Liu, K. Zhang, F. Ding, Chem. Sci. 8, 2209 (2017).

    Article  CAS  Google Scholar 

  50. K.J. MacKenzie, O.M. Dunens, A.T. Harris, Ind. Eng. Chem. Res. 49, 5323 (2010).

    Article  CAS  Google Scholar 

  51. F. Yang, X. Wang, D. Zhang, J. Yang, D. Luo, Z. Xu, J. Wei, J.-Q. Wang, Z. Xu, F. Peng, X. Li, R. Li, Y. Li, M. Li, X. Bai, F. Ding, Y. Li, Nature 510, 522 (2014).

    Article  CAS  Google Scholar 

  52. S. Zhang, L. Kang, X. Wang, L. Tong, L. Yang, Z. Wang, K. Qi, S. Deng, Q. Li, X. Bai, F. Ding, J. Zhang, Nature 543, 234 (2017).

    Article  CAS  Google Scholar 

  53. A. Maiti, C.J. Brabec, C.M. Roland, J. Bernholc, Phys. Rev. Lett. 73, 2468 (1994).

    Article  Google Scholar 

  54. J.-C. Charlier, A.D. Vita, X. Blase, R. Car, Science 275, 647 (1997).

    Article  Google Scholar 

  55. M. Buongiorno Nardelli, C. Brabec, A. Maiti, C. Roland, J. Bernholc, Phys. Rev. Lett. 80, 313 (1998).

    Article  Google Scholar 

  56. Y. Shibuta, S. Maruyama, Physica B 323, 187 (2002).

    Article  Google Scholar 

  57. F. Ding, K. Bolton, A. Rosén, J. Phys. Chem. B 108, 17369 (2004).

    Article  CAS  Google Scholar 

  58. J. Zhao, A. Martinez-Limia, P.B. Balbuena, Nanotechnology 16, S575 (2005).

    Article  CAS  Google Scholar 

  59. M.A. Ribas, F. Ding, P.B. Balbuena, B.I. Yakobson, J. Chem. Phys. 131, 224501 (2009).

    Article  CAS  Google Scholar 

  60. G. Zheng, S. Irle, K. Morokuma, J. Nanosci. Nanotechnol. 6, 1259 (2006).

    Article  CAS  Google Scholar 

  61. S. Irle, Y. Ohta, Y. Okamoto, A.J. Page, Y. Wang, K. Morokuma, Nano Res. 2, 755 (2009).

    Article  CAS  Google Scholar 

  62. J.-Y. Raty, F. Gygi, G. Galli, Phys. Rev. Lett. 95, 096103 (2005).

    Article  CAS  Google Scholar 

  63. Y. Ohta, Y. Okamoto, A.J. Page, S. Irle, K. Morokuma, ACS Nano 3, 3413 (2009).

    Article  CAS  Google Scholar 

  64. Z. Xu, T. Yan, F. Ding, Chem. Sci. 6, 4704 (2015).

    Article  CAS  Google Scholar 

  65. S. Iijima, Nature 354, 56 (1991).

    Article  Google Scholar 

  66. W.K. Burton, N. Cabrera, F.C. Frank, Nature 163, 398 (1949).

    Article  Google Scholar 

  67. F. Ding, A.R. Harutyunyan, B.I. Yakobson, Proc. Natl. Acad. Sci. U.S.A. 106, 2506 (2009).

    Article  Google Scholar 

  68. M. Marchand, C. Journet, D. Guillot, J.-M. Benoit, B.I. Yakobson, S.T. Purcell, Nano Lett. 9, 2961 (2009).

    Article  CAS  Google Scholar 

  69. J. Liu, C. Wang, X. Tu, B. Liu, L. Chen, M. Zheng, C. Zhou, Nat. Commun. 3, 1199 (2012).

    Article  CAS  Google Scholar 

  70. H.-B. Li, A.J. Page, S. Irle, K. Morokuma, J. Am. Chem. Soc. 134, 15887 (2012).

    Article  CAS  Google Scholar 

  71. M. He, H. Jiang, B. Liu, P.V. Fedotov, A.I. Chernov, E.D. Obraztsova, F. Cavalca, J.B. Wagner, T.W. Hansen, I.V. Anoshkin, E.A. Obraztsova, A.V. Belkin, E. Sairanen, A.G. Nasibulin, J. Lehtonen, E.I. Kauppinen, Sci. Rep. 3, 1460 (2013).

    Article  CAS  Google Scholar 

  72. H. Wang, L. Wei, F. Ren, Q. Wang, L.D. Pfefferle, G.L. Haller, Y. Chen, ACS Nano 7, 614 (2013).

    Article  CAS  Google Scholar 

  73. Y. Liu, A. Dobrinsky, B.I. Yakobson, Phys. Rev. Lett. 105, 235502 (2010).

    Article  CAS  Google Scholar 

  74. V.I. Artyukhov, M. Liu, E.S. Penev, B.I. Yakobson, J. Chem. Phys. 146, 244701 (2017).

    Article  CAS  Google Scholar 

  75. V.I. Artyukhov, E.S. Penev, B.I. Yakobson, Nat. Commun. 5, 4892 (2014).

    Article  CAS  Google Scholar 

  76. J.R. Sanchez-Valencia, T. Dienel, O. Gröning, I. Shorubalko, A. Mueller, M. Jansen, K. Amsharov, P. Ruffieux, R. Fasel, Nature 512, 61 (2014).

    Article  CAS  Google Scholar 

  77. L.T. Scott, E.A. Jackson, Q. Zhang, B.D. Steinberg, M. Bancu, B. Li, J. Am. Chem. Soc. 134, 107 (2012).

    Article  CAS  Google Scholar 

  78. P. Nikolaev, D. Hooper, N. Perea-López, M. Terrones, B. Maruyama, ACS Nano 8, 10214 (2014).

    Article  CAS  Google Scholar 

  79. M. Davenport, Chem. Eng. News 93, 10 (2015).

    Google Scholar 

  80. B. Xu, T. Kaneko, Y. Shibuta, T. Kato, Sci. Rep. 7, 11149 (2017).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

E.S.P. and B.I.Y. acknowledge support from the National Science Foundation (CBET 1605848), the Air Force Office of Scientific Research (FA9550-14–1-0107), and the Office of Naval Research (N00014-15-1-2251). F.D. acknowledges support from the Institute of Basic Science, South Korea.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Evgeni S. Penev.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Penev, E.S., Ding, F. & Yakobson, B.I. Mechanisms and theoretical simulations of the catalytic growth of nanocarbons. MRS Bulletin 42, 794–801 (2017). https://doi.org/10.1557/mrs.2017.236

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/mrs.2017.236

Navigation