Skip to main content

Advertisement

Log in

Inside out—Visualizing dynamic chemical transformations in situ with nanometer-scale resolution

  • Technical Feature
  • Published:
MRS Bulletin Aims and scope Submit manuscript

Abstract

In Pixar’s Inside Out, the character Joy proclaims, “Do you ever look at someone and wonder what’s going on inside?” Driven by similar curiosity, the scientific community has developed remarkable in situ characterization tools to visualize the inner workings of complex, dynamic systems, elucidating their functions and enabling next-generation technologies. This article describes our research developing plasmonic techniques to visualize dynamic chemical transformations in situ with nanometer-scale resolution. As a model system, we investigated the hydrogenation and dehydrogenation of palladium nanocrystals. Using environmental electron microscopy and spectroscopy, we monitored this reaction with sub-2-nm spatial resolution and millisecond time resolution. Particles of different sizes, shapes, and crystallinities exhibit distinct thermodynamic and kinetic properties, highlighting several important design principles for next-generation catalysts and energy-storage devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A.S. Arico, P. Bruce, B. Scrosati, J.-M. Tarascon, W. van Schalwijk, Nat. Mater. 4, 366 (2005).

    Article  CAS  Google Scholar 

  2. C. Delmas, M. Maccario, L. Croguennec, F. Le Cras, F. Weill, Nat. Mater. 7, 665 (2008).

    Article  CAS  Google Scholar 

  3. M. Ebner, F. Marone, M. Stampanoni, V. Wood, Science 342, 716 (2013).

    Article  CAS  Google Scholar 

  4. N. Meethong, H.Y.S. Huang, S.A. Speakman, W.C. Carter, Y.M. Chiang, Adv. Funct. Mater. 17, 1115 (2007).

    Article  CAS  Google Scholar 

  5. P.G. Bruce, B. Scrosati, J.-M. Tarascon, Angew. Chem. Int. Ed. 47, 2930 (2008).

    Article  CAS  Google Scholar 

  6. W.C. Chueh, F.E. Gabaly, J.D. Sugar, N.C. Bartelt, A.H. McDaniel, K.R. Fenton, K.R. Zavadil, T. Tyliszczak, W. Lai, K.F. McCarty, Nano Lett. 13, 866 (2013).

    Article  CAS  Google Scholar 

  7. S. Haile, Acta Mater. 51, 5981 (2003).

    Article  CAS  Google Scholar 

  8. A. Pundt, Adv. Eng. Mater. 6, 11 (2004).

    Article  CAS  Google Scholar 

  9. V. Bérubé, G. Radtke, M. Dresselhaus, G. Chen, Int. J. Energy Res. 31, 637 (2007).

    Article  CAS  Google Scholar 

  10. R. Bardhan, L. Hedges, C. Pint, A. Javey, S. Whitelam, J. Urban, Nat. Mater. 12, 905 (2013).

    Article  CAS  Google Scholar 

  11. V. Meunier, S. Kalinin, B. Sumpter, Phys. Rev. Lett. 98, 056401 (2007).

    Article  CAS  Google Scholar 

  12. T. Ohno, Nat. Mater. 10, 591 (2011).

    Article  CAS  Google Scholar 

  13. T. Flanagan, W.A. Oates, Annu. Rev. Mater. Sci. 21, 269 (1991).

    Article  CAS  Google Scholar 

  14. T. Graham, Philos. Trans. R. Soc. London 156, 399 (1866).

    Article  Google Scholar 

  15. C. Sachs, A. Pundt, R. Kirchheim, M. Winter, M.T. Reetz, D. Fritsch, Phys. Rev. B 64, 075408 (2001).

    Article  CAS  Google Scholar 

  16. A. Pundt, R. Kirchheim, Annu. Rev. Mater. Res. 36, 555 (2006).

    Article  CAS  Google Scholar 

  17. M. Yamauchi, R. Ikeda, H. Kitagawa, M. Takata, J. Phys. Chem. C 112, 3294 (2008).

    Article  CAS  Google Scholar 

  18. N. Liu, Nat. Mater. 10, 631 (2011).

    Article  CAS  Google Scholar 

  19. M.L. Tang, N. Liu, J.A. Dionne, A.P. Alivisatos, J. Am. Chem. Soc. 133, 13220 (2011).

    Article  CAS  Google Scholar 

  20. T. Shegai, C. Langhammer, Adv. Mater. 23, 4409 (2011).

    Article  CAS  Google Scholar 

  21. A. Tittl, C. Kremers, J. Dorfmüller, D.N. Chigrin, H. Giessen, Opt. Mater. Express 2, 111 (2012).

    Article  CAS  Google Scholar 

  22. T. Yokosawa, T. Alan, G. Pandraud, B. Dam, H. Zandbergen, Ultramicroscopy 112, 47 (2012).

    Article  CAS  Google Scholar 

  23. S. Syrenova, C. Wadell, F.A.A. Nugroho, T.A. Gschneidtner, Y. Fernandez, G. Nalin, D. Świtlik, F. Westerlund, T.J. Antosiewicz, V.P. Zhdanov, K. Moth-Poulsen, C. Langhammer, Nat. Mater. 14, 1326 (2015).

    Article  CAS  Google Scholar 

  24. A. Baldi, T.C. Narayan, A.L. Koh, J.A. Dionne, Nat. Mater. 13, 1143 (2014).

    Article  CAS  Google Scholar 

  25. R. Griessen, N. Strohfeldt, H. Giessen, Nat. Mater. 15, 311 (2016).

    Article  CAS  Google Scholar 

  26. A. Ulvestad, M.J. Welland, S.S.E. Collins, R. Harder, E. Maxey, J. Wingert, A. Singer, S. Hy, P. Mulvaney, P. Zapol, O.G. Shpyrko, Nat. Commun. 6, 1 (2015).

    Article  CAS  Google Scholar 

  27. W. Niu, L. Zhang, G. Xu, Cryst. Growth Des. 8, 4440 (2008).

    Article  CAS  Google Scholar 

  28. W. Niu, L. Zhang, G. Xu, ACS Nano 4, 1987 (2010).

    Article  CAS  Google Scholar 

  29. L. Bisson, C. Boissiere, L. Nicole, D. Grosso, J.P. Jolivet, C. Thomazeau, D. Uzio, G. Berhault, C. Sanchez, Chem. Mater. 21, 2668 (2009).

    Article  CAS  Google Scholar 

  30. Y. Xiong, H. Cai, B.J. Wiley, J. Wang, M.J. Kim, Y. Xia, J. Am. Chem. Soc. 129 (12), 3665 (2007).

    Article  CAS  Google Scholar 

  31. F.J. García de Abajo, Rev. Mod. Phys. 82, 209 (2010).

    Article  CAS  Google Scholar 

  32. Y. Yamada, K. Tajima, S. Bao, M. Okada, A. Roos, K. Yoshimura, J. Appl. Phys. 106, 013523 (2009).

    Article  CAS  Google Scholar 

  33. R. Gremaud, M. Gonzalez-Silveira, Y. Pivak, S. de Man, M. Slaman, H. Schreuders, B. Dam, R. Griessen, Acta Mater. 57, 1209 (2009).

    Article  CAS  Google Scholar 

  34. T. Narayan, A. Baldi, A.L. Koh, R. Sinclair, J.A. Dionne, Nat. Mater. 15, 768 (2016).

    Article  CAS  Google Scholar 

  35. T. Narayan, F. Hayee, A. Baldi, A. Koh, R. Sinclair, J. Dionne, Nat. Commun. 8, 14020 (2017).

    Article  CAS  Google Scholar 

  36. A. Manthiram, A.V. Murugan, A. Sarkar, T. Muraliganth, Energy Environ. Sci. 1, 621 (2008).

    Article  CAS  Google Scholar 

  37. Y. Li, F. Cui, M.B. Ross, D. Kim, Y. Sun, P. Yang, Nano Lett. 17, 1312 (2017).

    Article  CAS  Google Scholar 

  38. E. Ertekin, P.A. Greaney, D.C. Chrzan, T.D. Sands, J. Appl. Phys. 97, 114325 (2005).

    Article  CAS  Google Scholar 

  39. F. Hayee, T. Narayan, A. Baldi, A.L. Koh, R. Sinclair, J. Dionne, (forthcoming).

  40. X. Zhang, Y.L. Chen, R.-S. Liu, D.P. Tsai, Rep. Prog. Phys. 76, 46401 (2013).

    Article  CAS  Google Scholar 

  41. S. Linic, U. Aslam, C. Boerigter, M. Morabito, Nat. Mater. 14, 567 (2015).

    Article  CAS  Google Scholar 

  42. G. Baffou, R. Quidant, Chem. Soc. Rev. 43, 3898 (2014).

    Article  CAS  Google Scholar 

  43. D. Swearer, H. Zhao, L. Zhou, C. Zhang, H. Robatjazi, J.M.P. Martirez, C.M. Krauter, S. Yazdi, M. McClain, E. Ringe, E. Carter, P. Nordlander, N.J. Halas, Proc. Natl. Acad. Sci. U.S.A. 113, 8916 (2016).

    Article  CAS  Google Scholar 

  44. M. Vadai, F. Hayee, K. Sytwu, D. Angell, J.A. Dionne, (forthcoming).

Download references

Author information

Authors and Affiliations

Authors

Additional information

The following article is based on excerpts of the MRS Outstanding Young Investigator Award Lecture presented by Jennifer A. Dionne on April 17, 2017, at the 2017 Materials Research Society Spring Meeting in Phoenix, Ariz.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dionne, J.A. Inside out—Visualizing dynamic chemical transformations in situ with nanometer-scale resolution. MRS Bulletin 42, 743–751 (2017). https://doi.org/10.1557/mrs.2017.215

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/mrs.2017.215

Navigation