Skip to main content
Log in

Impact of pressure on the structure of glass and its material properties

  • Materials Under Pressure
  • Published:
MRS Bulletin Aims and scope Submit manuscript

Abstract

High pressures have a significant impact on the structure-related properties of glass and are encountered in scenarios ranging from fracture mechanics, where stresses in the gigapascal regime are easily generated by sharp-contact loading, to the manufacture of permanently densified materials with tuned physical characteristics. Here, we consider pressure-induced structural changes that occur in glass and show that, for oxide materials, the oxygen-packing fraction plays a key role in determining when these changes are likely to occur. Fivefold coordinated Si atoms appear as important intermediaries in the pressure-induced deformation of silica glass.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P.W. Bridgman, I. Šimon, J. Appl. Phys. 24, 405 (1953).

    Article  CAS  Google Scholar 

  2. J.D. Mackenzie, J. Am. Ceram. Soc. 46, 461 (1963).

    Article  CAS  Google Scholar 

  3. J.D. Mackenzie, J. Am. Ceram. Soc. 47, 76 (1964).

    Article  CAS  Google Scholar 

  4. H.M. Cohen, R. Roy, Phys. Chem. Glasses 6, 149 (1965).

    CAS  Google Scholar 

  5. M. Grimsditch, Phys. Rev. Lett. 52, 2379 (1984).

    Article  CAS  Google Scholar 

  6. T. Grande, J.R. Holloway, P.F. McMillan, C.A. Angell, Nature 369, 43 (1994).

    Article  CAS  Google Scholar 

  7. T. Rouxel, J. Am. Ceram. Soc. 90, 3019 (2007).

    Article  CAS  Google Scholar 

  8. T. Deschamps, J. Margueritat, C. Martinet, A. Mermet, B. Champagnon, Sci. Rep. 4, 7193 (2014).

    Article  CAS  Google Scholar 

  9. T. Rouxel, Philos. Trans. R. Soc. Lond. A 373, 20140140 (2015).

    Google Scholar 

  10. M. Guerette, M.R. Ackerson, J. Thomas, F. Yuan, E.B. Watson, D. Walker, L. Huang, Sci. Rep. 5, 15343 (2015).

    Article  CAS  Google Scholar 

  11. V.V. Brazhkin, A.G. Lyapin, J. Phys. Condens. Matter 15, 6059 (2003).

    Article  CAS  Google Scholar 

  12. D. Machon, F. Meersman, M.C. Wilding, M. Wilson, P.F. McMillan, Prog. Mater. Sci. 61, 216 (2014).

    Article  CAS  Google Scholar 

  13. P.S. Salmon, A. Zeidler, J. Phys. Condens. Matter 27, 133201 (2015).

    Article  Google Scholar 

  14. S. Kohara, P.S. Salmon, Adv. Phys. X 1, 640 (2016).

    CAS  Google Scholar 

  15. T. Rouxel, H. Ji, J.P. Guin, F. Augereau, R. Rufflé, J. Appl. Phys. 107, 094903 (2010).

    Article  Google Scholar 

  16. R. Gy, Mater. Sci. Eng. B 149, 159 (2008).

    Article  CAS  Google Scholar 

  17. A.K. Varshneya, Int. J. Appl. Glass Sci. 1, 131 (2010).

    Article  CAS  Google Scholar 

  18. J. Luo, P.J. Lezzi, K.D. Vargheese, A. Tandia, J.T. Harris, T.M. Gross, J.C. Mauro, Front. Mater. 3, 52 (2016).

    Article  Google Scholar 

  19. T. Rouxel, H. Ji, T. Hammouda, A. Moréac, Phys. Rev. Lett. 100, 225501 (2008).

    Article  CAS  Google Scholar 

  20. A. Zeidler, P.S. Salmon, Phys. Rev. B Condens. Matter 93, 214204 (2016).

    Article  Google Scholar 

  21. P.S. Salmon, A. Zeidler, Phys. Chem. Chem. Phys. 15, 15286 (2013).

    Article  CAS  Google Scholar 

  22. A. Zeidler, P.S. Salmon, L.B. Skinner, Proc. Natl. Acad. Sci. U.S.A. 111, 10045 (2014).

    Article  CAS  Google Scholar 

  23. Y. Kono, C. Kenney-Benson, D. Ikuta, Y. Shibazaki, Y. Wang, G. Shen, Proc. Natl. Acad. Sci. U.S.A. 113, 3436 (2016).

    Article  CAS  Google Scholar 

  24. N. Funamori, S. Yamamoto, T. Yagi, T. Kikegawa, J. Geophys. Res. 109, B03203 (2004).

    Google Scholar 

  25. C. Sanloup, J.W.E. Drewitt, Z. Konôpková, P. Dalladay-Simpson, D.M. Morton, N. Rai, W. van Westrenen, W. Morgenroth, Nature 503, 104 (2013).

    Article  CAS  Google Scholar 

  26. P.A. Madden, M. Wilson, Chem. Soc. Rev. 25, 339 (1996).

    Article  CAS  Google Scholar 

  27. T.M. Gross, J. Non Cryst. Solids 358, 3445 (2012).

    Article  CAS  Google Scholar 

  28. F. Yuan, L. Huang, Sci. Rep. 4, 5035 (2014).

    Article  CAS  Google Scholar 

  29. S. Yoshida, J.-C. Sanglebœuf, T. Rouxel, J. Mater. Res. 20, 3404 (2005).

    Article  CAS  Google Scholar 

  30. Y. Liang, C.R. Miranda, S. Scandolo, Phys. Rev. B Condens. Matter 75 024205 (2007).

    Article  Google Scholar 

  31. A. Zeidler, K. Wezka, R.F. Rowlands, D.A.J. Whittaker, P.S. Salmon, A. Polidori, J.W.E. Drewitt, S. Klotz, H.E. Fischer, M.C. Wilding, C.L. Bull, M.G. Tucker, M. Wilson, Phys. Rev. Lett. 113, 135501 (2014).

    Article  Google Scholar 

  32. C. Meade. R. Jeanloz, Science 241, 1072 (1988).

    Article  CAS  Google Scholar 

  33. M.J. Aziz, S. Circone, C.B. Agee, Nature 390, 596 (1997).

    Article  CAS  Google Scholar 

  34. P.S. Salmon, Nat. Mater. 1, 87 (2002).

    Article  CAS  Google Scholar 

  35. J.C. Mauro, A. Tandia, K.D. Vargheese, Y.Z. Mauro, M.M. Smedskjaer, Chem. Mater. 28, 4267 (2016).

    Article  CAS  Google Scholar 

  36. D. Wakabayashi, N. Funamori, T. Sato, Phys. Rev. B Condens. Matter 91 014106 (2015).

    Article  Google Scholar 

  37. T.M. Gross, M. Tomozawa, J. Non Cryst. Solids 354, 5567 (2008).

    Article  CAS  Google Scholar 

  38. T.A. Michalske, S.W. Freiman, Nature 295 511 (1982).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Salmon, P.S., Huang, L. Impact of pressure on the structure of glass and its material properties. MRS Bulletin 42, 734–737 (2017). https://doi.org/10.1557/mrs.2017.210

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/mrs.2017.210

Navigation