Skip to main content

Advertisement

Log in

New states of matter and chemistry at extreme pressures: Low-Z extended solid

  • Materials Under Pressure
  • Published:
MRS Bulletin Aims and scope Submit manuscript

Abstract

High-pressure research, whether static or dynamic, provides “windows” to novel states, transformations, and properties of highly compressed extended states of light elemental solids that may comprise the internal structures of giant planets and stars. These low-Z extended solids are extremely hard, have high energy density, and exhibit novel electronic and nonlinear optical properties—superior to other known materials at ambient conditions. These materials are often formed at formidably high pressures and are highly metastable at ambient conditions; only a few systems have been recovered at ambient conditions, limiting the materials to the realm of fundamental scientific discovery. An exciting new research area has recently emerged that aims to understand and ultimately allow for control of the stability, bonding, structure, and properties of low-Z extended solids. This article presents an overview of the basic principles that govern and control the pressure-induced chemistry in dense solids. This is aimed at identifying high energy density, low-Z extended solids that are amenable to up-scaled synthesis and stabilization at ambient conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B. Buffett, D. Archer, Earth Planet. Sci. Lett. 227, 185 (2004).

    Article  CAS  Google Scholar 

  2. F.P. Bundy, H.T. Hall, H.M. Strong, R.H. Wentroff, Nature 178, 51 (1955).

    Article  Google Scholar 

  3. A.F. Goncharov, V.V. Struzhkin, M.S. Somayazulu, R.J. Hemley, H.K. Mao, Science 273, 218 (1996).

    Article  CAS  Google Scholar 

  4. R.P. Dias, I.F. Silvera, Science 335, 715 (2017).

    Article  Google Scholar 

  5. M.-S. Miao, R. Hoffmann, J. Am. Chem. Soc. 13, 3631 (2015).

    Article  Google Scholar 

  6. C.J. Pickard, R.J. Needs, Nat. Mater. 9, 640 (2010).

    Article  Google Scholar 

  7. M.D. Knudson, M.P. Desjarlais, D.H. Dolan, Science 322, 1822 (2008).

    Article  CAS  Google Scholar 

  8. R.F. Smith, J.H. Eggert, T.S. Duffy, D.G. Braum, J.R. Peterson, R.E. Rudd, J. Biener, A.E. Lazichi, A.V. Hamza, J. Wang, T. Braum, L.X. Benedict, P.M. Celliers, G.W. Collins, Nature 511, 330 (2014).

    Article  CAS  Google Scholar 

  9. D. Tomasino, M. Kim, J. Smith, C.S. Yoo, Phys. Rev. Lett. 113, 205502 (2014).

    Article  Google Scholar 

  10. Y.J. Ryu, M. Kim, J. Lim, R. Dias, D. Klug, C.-S. Yoo, J. Phys. Chem. C 120, 27548 (2016).

    Article  CAS  Google Scholar 

  11. A. Hermann, N.W. Ashcroft, R. Hoffmann, Proc. Natl. Acad. Sci. U.S.A. 109, 745 (2011).

    Article  Google Scholar 

  12. C.-S. Yoo, A. Sengupta, M. Kim, Angew. Chem. Int. Ed. 50, 1 (2011).

    Article  Google Scholar 

  13. M. Hanfland, K. Syassen, N.E. Christensen, D.L. Novikov, Nature 408, 174 (2000).

    Article  CAS  Google Scholar 

  14. Y. Ma, M.I. Eremets, A.R. Oganov, Y. Xie, I. Trojan, S. Medvedev, A.O. Lyakhov, M. Valle, V. Prakapenka, Nature 458, 182 (2009).

    Article  CAS  Google Scholar 

  15. A.R. Oganov, J. Chen, C. Gatti, Y. Ma, Y. Ma, C.W. Glass, Z. Liu, T. Yu, O.O. Kurakevych, V.L. Solozhenko, Nature 457, 863 (2009).

    Article  CAS  Google Scholar 

  16. M.I. Eremets, A.G. Gavriliuk, I.A. Trojan, D.A. Dzivenko, R. Boehler, Nat. Mater. 3, 558 (2004).

    Article  CAS  Google Scholar 

  17. V. Iota, C.S. Yoo, H. Cynn, Science 283, 1510 (1999).

    Article  CAS  Google Scholar 

  18. C. Mailhiot, L.H. Yang, A.K. McMahan, Phys. Rev. B Condens. Matter 46, 14419 (1992).

    Article  CAS  Google Scholar 

  19. M.J. Lipp, J.P. Klepeis, B.J. Baer, H. Cynn, W.J. Evans, V. Iota, C.-S. Yoo, Phys. Rev. B Condens. Matter 76, 014113 (2007).

    Article  Google Scholar 

  20. M.L. Cohen, Phys. Rev. B Condens. Matter 32 7988 (1985).

    Article  CAS  Google Scholar 

  21. M.J. Lipp, W.J. Evans, B.J. Baer, C.S. Yoo, Nat. Mater. 4, 211 (2005).

    Article  CAS  Google Scholar 

  22. A.P. Drozdov, M.I. Eremets, I.A. Troyan, V. Ksenofontov, S.I. Shylin, Nature 525, 73 (2015).

    Article  CAS  Google Scholar 

  23. R.P. Dias, C.S. Yoo, V.V. Struzhkin, M. Kim, T. Muramatsu, T. Matsuoka, Y. Ohishi, S. Sinogelkin, Proc. Natl. Acad. Sci U.S.A. 110, 11720 (2013).

    Article  CAS  Google Scholar 

  24. M. Kim, C.S. Yoo, J. Chem. Phys. 134, 044519 (2011).

    Article  Google Scholar 

  25. Z. Raza, C.J. Pickard, C. Pinilla, A.M. Saitta, Phys. Rev. Lett. 111, 235501 (2013).

    Article  Google Scholar 

  26. X. Yong, H. Liu, M. Wu, Y. Yao, J.S. Tse, R. Dias, C.-S. Yoo, Proc. Natl. Acad. Sci. U.S.A. 113, 11110 (2016).

    Article  CAS  Google Scholar 

  27. Y.A. Mankelevich, P.W. May, Diam. Relat. Mater 17, 1021 (2008).

    Article  CAS  Google Scholar 

  28. Y.-J. Ryu, M. Kim, C.-S. Yoo, Sci. Rep. 6, 15139 (2015).

    Article  Google Scholar 

  29. J. Lim, C.-S. Yoo, Appl. Phys. Lett. 109, 051905 (2016).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yoo, CS. New states of matter and chemistry at extreme pressures: Low-Z extended solid. MRS Bulletin 42, 724–728 (2017). https://doi.org/10.1557/mrs.2017.209

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/mrs.2017.209

Navigation