Skip to main content
Log in

Single-atom dynamics in scanning transmission electron microscopy

  • Single Atom Fabrication with Beams and Probes
  • Published:
MRS Bulletin Aims and scope Submit manuscript

Abstract

The correction of aberrations in the scanning transmission electron microscope (STEM) has simultaneously improved both spatial and temporal resolution, making it possible to capture the dynamics of single atoms inside materials, and resulting in new insights into the dynamic behavior of materials. In this article, we describe the different beam–matter interactions that lead to atomic excitations by transferring energy and momentum. We review recent examples of sequential STEM imaging to demonstrate the dynamic behavior of single atoms both within materials, at dislocations, at grain and interface boundaries, and on surfaces. We also discuss the effects of such dynamic behavior on material properties. We end with a summary of ongoing instrumental and algorithm developments that we anticipate will improve the temporal resolution significantly, allowing unprecedented insights into the dynamic behavior of materials at the atomic scale.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. G. Duscher, M.F. Chisholm, U. Alber, M. Ruhle, Nat. Mater. 3, 621 (2004).

    Google Scholar 

  2. M. Kim, G. Duscher, N.D. Browning, K. Sohlberg, S.T. Pantelides, S.J. Pennycook, Phys. Rev. Lett. 86, 4056 (2001).

    Google Scholar 

  3. M.A. Frechero, M. Rocci, G. Sanchez-Santolino, A. Kumar, J. Salafranca, R. Schmidt, M.R. Diaz-Guillen, O.J. Dura, A. Rivera-Calzada, R. Mishra, S. Jesse, S.T. Pantelides, S.V. Kalinin, M. Varela, S.J. Pennycook, J. Santamaria, C. Leon, Sci. Rep. 5, 17229 (2015).

    Google Scholar 

  4. Z.L. Xiang, S. Ashhab, J.Q. You, F. Nori, Rev. Mod. Phys. 85, 623 (2013).

    Google Scholar 

  5. S.V. Kalinin, A. Borisevich, S. Jesse, Nature 539, 485 (2016).

    Google Scholar 

  6. S. Jesse, A.Y. Borisevich, J.D. Fowlkes, A.R. Lupini, P.D. Rack, R.R. Unocic, B.G. Sumpter, S.V. Kalinin, A. Belianinov, O.S. Ovchinnikova, ACS Nano 10, 5600 (2016).

    Google Scholar 

  7. Y. Yang, C.C. Chen, M.C. Scott, C. Ophus, R. Xu, A. Pryor, L. Wu, F. Sun, W. Theis, J. Zhou, M. Eisenbach, P.R. Kent, R.F. Sabirianov, H. Zeng, P. Ercius, J. Miao, Nature 542, 75 (2017).

    Google Scholar 

  8. R. Ishikawa, A.R. Lupini, S.D. Findlay, T. Taniguchi, S.J. Pennycook, Nano Lett. 14, 1903 (2014).

    Google Scholar 

  9. J. Hwang, J.Y. Zhang, A.J. D’Alfonso, L.J. Allen, S. Stemmer, Phys. Rev. Lett. 111, 266101 (2013).

    Google Scholar 

  10. J.M. LeBeau, S.D. Findlay, L.J. Allen, S. Stemmer, Nano Lett. 10, 4405 (2010).

    Google Scholar 

  11. O.L. Krivanek, M.F. Chisholm, N. Dellby, M.F. Murfitt, “Atomic-Resolution STEM at Low Primary Energies,” in Scanning Transmission Electron Microscopy: Imaging and Analysis, S.J. Pennycook, P.D. Nellist, Eds. (Springer, New York, 2011), p. 615.

    Google Scholar 

  12. R.F. Egerton, P. Li, M. Malac, Micron 35, 399 (2004).

    Google Scholar 

  13. R.F. Egerton, R. McLeod, F. Wang, M. Malac, Ultramicroscopy 110, 991 (2010).

    Google Scholar 

  14. G. Henkelman, B.P. Uberuaga, H. Jónsson, J. Chem. Phys. 113, 9901 (2000).

    Google Scholar 

  15. N. Jiang, G.G. Hembree, J.C.H. Spence, J. Qiu, F.J.G. de Abajo, J. Silcox, Appl. Phys. Lett. 83, 551 (2003).

    Google Scholar 

  16. D. Su, F. Wang, C. Ma, N. Jiang, Nano Energy 2, 343 (2013).

    Google Scholar 

  17. N. Jiang, Rep. Prog. Phys. 79, 016501 (2016).

    Google Scholar 

  18. G.S. Parkinson, Z. Novotny, G. Argentero, M. Schmid, J. Pavelec, R. Kosak, P. Blaha, U. Diebold, Nat. Mater. 12, 724 (2013).

    Google Scholar 

  19. D. Gohlke, R. Mishra, O.D. Restrepo, D. Lee, W. Windl, J. Gupta, Nano Lett. 13, 2418 (2013).

    Google Scholar 

  20. M.S. Isaacson, J. Langmore, N.W. Parker, D. Kopf, M. Utlaut, Ultramicroscopy 1, 359 (1976).

    Google Scholar 

  21. M. Isaacson, D. Kopf, M. Utlaut, N.W. Parker, A.V. Crewe, Proc. Natl. Acad. Sci. U.S.A. 74, 1802 (1977).

    Google Scholar 

  22. P.E. Batson, Microsc. Microanal. 14, 89 (2008).

    Google Scholar 

  23. T.J. Pennycook, J.R. McBride, S.J. Rosenthal, S.J. Pennycook, S.T. Pantelides, Nano Lett. 12, 3038 (2012).

    Google Scholar 

  24. C.W. Han, H. Iddir, A. Uzun, L.A. Curtiss, N.D. Browning, B.C. Gates, V. Ortalan, J. Phys. Chem. Lett. 6, 4675 (2015).

    Google Scholar 

  25. O.L. Krivanek, W. Zhou, M.F. Chisholm, J.C. Idrobo, T.C. Lovejoy, Q.M. Ramasse, N. Dellby, “Gentle STEM of Single Atoms: Low keV Imaging and Analysis at Ultimate Detection Limits,” in Low Voltage Electron Microscopy: Principles and Applications, D.C. Bell, N. Erdman, Eds. (Wiley and Royal Microscopical Society, Oxford, UK, 2012), p. 119.

    Google Scholar 

  26. O.L. Krivanek, M.F. Chisholm, V. Nicolosi, T.J. Pennycook, G.J. Corbin, N. Dellby, M.F. Murfitt, C.S. Own, Z.S. Szilagyi, M.P. Oxley, S.T. Pantelides, S.J. Pennycook, Nature 464, 571 (2010).

    Google Scholar 

  27. Ç.Ö. Girit, J.C. Meyer, R. Erni, M.D. Rossell, C. Kisielowski, L. Yang, C.-H. Park, M.F. Crommie, M.L. Cohen, S.G. Louie, A. Zettl, Science 323, 1705 (2009).

    Google Scholar 

  28. S. Kurasch, J. Kotakoski, O. Lehtinen, V. Skakalova, J. Smet, C.E. Krill III, A.V. Krasheninnikov, U. Kaiser, Nano Lett. 12, 3168 (2012).

    Google Scholar 

  29. H.-P. Komsa, S. Kurasch, O. Lehtinen, U. Kaiser, A.V. Krasheninnikov, Phys. Rev. B Condens. Matter 88, 035301 (2013).

    Google Scholar 

  30. O. Lehtinen, N. Vats, G. Algara-Siller, P. Knyrim, U. Kaiser, Nano Lett. 15, 235 (2015).

    Google Scholar 

  31. H.P. Komsa, J. Kotakoski, S. Kurasch, O. Lehtinen, U. Kaiser, A.V. Krasheninnikov, Phys. Rev. Lett. 109, 035503 (2012).

    Google Scholar 

  32. R. Mishra, W. Zhou, S.J. Pennycook, S.T. Pantelides, J.C. Idrobo, Phys. Rev. B Condens. Matter 88, 144409 (2013).

    Google Scholar 

  33. Z. He, K. He, A.W. Robertson, A.I. Kirkland, D. Kim, J. Ihm, E. Yoon, G.D. Lee, J.H. Warner, Nano Lett. 14, 3766 (2014).

    Google Scholar 

  34. A.W. Robertson, G.D. Lee, K. He, E. Yoon, A.I. Kirkland, J.H. Warner, Nano Lett. 14, 1634 (2014).

    Google Scholar 

  35. Q. Chen, K. He, A.W. Robertson, A.I. Kirkland, J.H. Warner, ACS Nano 10, 10418 (2016).

    Google Scholar 

  36. C.C. Gong, A.W. Robertson, K. He, G.D. Lee, E. Yoon, C.S. Allen, A.I. Kirkland, J.H. Warner, ACS Nano 9, 10066 (2015).

    Google Scholar 

  37. C. Freysoldt, B. Grabowski, T. Hickel, J. Neugebauer, G. Kresse, A. Janotti, C.G. Van de Walle, Rev. Mod. Phys. 86, 253 (2014).

    Google Scholar 

  38. J. Lee, W. Zhou, S.J. Pennycook, J.C. Idrobo, S.T. Pantelides, Nat. Commun. 4, 1650 (2013).

    Google Scholar 

  39. J. Kotakoski, C. Mangler, J.C. Meyer, Nat. Commun. 5, 3991 (2014).

    Google Scholar 

  40. T. Susi, J. Kotakoski, D. Kepaptsoglou, C. Mangler, T.C. Lovejoy, O.L. Krivanek, R. Zan, U. Bangert, P. Ayala, J.C. Meyer, Q. Ramasse, Phys. Rev. Lett. 113, 115501 (2014).

    Google Scholar 

  41. H. Li, S. Wang, H. Sawada, G.G. Han, T. Samuels, C.S. Allen, A.I. Kirkland, J.C. Grossman, J.H. Warner, ACS Nano 11, 3392 (2017).

    Google Scholar 

  42. S.J. Pennycook, P.D. Nellist, Eds., Scanning Transmission Electron Microscopy: Imaging and Analysis (Springer-Verlag, New York, 2011).

    Google Scholar 

  43. S.J. Pennycook, MRS Bull. 37, 943 (2012).

    Google Scholar 

  44. J. Lin, O. Cretu, W. Zhou, K. Suenaga, D. Prasai, K.I. Bolotin, N.T. Cuong, M. Otani, S. Okada, A.R. Lupini, J.-C. Idrobo, D. Caudel, A. Burger, N.J. Ghimire, J. Yan, D.G. Mandrus, S.J. Pennycook, S.T. Pantelides, Nat. Nanotechnol. 9, 436 (2014).

    Google Scholar 

  45. T. Susi, J.C. Meyer, J. Kotakoski, Ultramicroscopy 180, 163 (2017).

    Google Scholar 

  46. R. Ishikawa, R. Mishra, A.R. Lupini, S.D. Findlay, T. Taniguchi, S.T. Pantelides, S.J. Pennycook, Phys. Rev. Lett. 113, 155501 (2014).

    Google Scholar 

  47. S.H. Oh, K. van Benthem, S.I. Molina, A.Y. Borisevich, W. Luo, P. Werner, N.D. Zakharov, D. Kumar, S.T. Pantelides, S.J. Pennycook, Nano Lett. 8, 1016 (2008).

    Google Scholar 

  48. M.L. Bowers, C. Ophus, A. Gautam, F. Lancon, U. Dahmen, Phys. Rev. Lett. 116, 106102 (2016).

    Google Scholar 

  49. N.J. Peter, C.H. Liebscher, C. Kirchlechner, G. Dehm, J. Mater. Res. 32, 968 (2016).

    Google Scholar 

  50. C. Li, Y.-Y. Zhang, T.J. Pennycook, Y. Wu, A.R. Lupini, N. Paudel, S.T. Pantelides, Y. Yan, S.J. Pennycook, Appl. Phys. Lett. 109, 143107 (2016).

    Google Scholar 

  51. C. Li, Y. Wu, T.J. Pennycook, A.R. Lupini, D.N. Leonard, W. Yin, N. Paudel, M. Al-Jassim, Y. Yan, S.J. Pennycook, Phys. Rev. Lett. 111, 096403 (2013).

    Google Scholar 

  52. P. Gao, R. Ishikawa, E. Tochigi, A. Kumamoto, N. Shibata, Y. Ikuhara, Chem. Mater. 29, 1006 (2017).

    Google Scholar 

  53. H. Ryoo, H.B. Bae, Y.M. Kim, J.G. Kim, S. Lee, S.Y. Chung, Angew. Chem. Int. Ed. Engl. 54, 7963 (2015).

    Google Scholar 

  54. J.H. Jang, Y.M. Kim, Q. He, R. Mishra, L. Qiao, M.D. Biegalski, A.R. Lupini, S.T. Pantelides, S.J. Pennycook, S.V. Kalinin, A.Y. Borisevich, ACS Nano 11, 6942 (2017).

    Google Scholar 

  55. L. Yao, S. Majumdar, L. Akaslompolo, S. Inkinen, Q.H. Qin, S. van Dijken, Adv. Mater. 26, 2789 (2014).

    Google Scholar 

  56. T.J. Pennycook, L. Jones, H. Pettersson, J. Coelho, M. Canavan, B. Mendoza-Sanchez, V. Nicolosi, P.D. Nellist, Sci. Rep. 4, 7555 (2014).

    Google Scholar 

  57. H. Sawada, N. Shimura, F. Hosokawa, N. Shibata, Y. Ikuhara, Microscopy 64, 213 (2015).

    Google Scholar 

  58. R. Ishikawa, S.J. Pennycook, A.R. Lupini, S.D. Findlay, N. Shibata, Y. Ikuhara, Appl. Phys. Lett. 109, 163102 (2016).

    Google Scholar 

  59. R. Ishikawa, A.R. Lupini, Y. Hinuma, S.J. Pennycook, Ultramicroscopy 151, 122 (2015).

    Google Scholar 

  60. X. Sang, A.R. Lupini, R.R. Unocic, M. Chi, A.Y. Borisevich, S.V. Kalinin, E. Endeve, R.K. Archibald, S. Jesse, Adv. Struct. Chem. Imaging 2, 6 (2016).

    Google Scholar 

  61. T. Furnival, R.K. Leary, P.A. Midgley, Ultramicroscopy 178, 112 (2016).

    Google Scholar 

  62. A. Stevens, H. Yang, L. Carin, I. Arslan, N.D. Browning, Microscopy 63, 41 (2014).

    Google Scholar 

  63. X. Sang, Y. Xie, M.-W. Lin, M. Alhabeb, K.L. Van Aken, Y. Gogotsi, P.R.C. Kent, K. Xiao, R.R. Unocic, ACS Nano 10, 9193 (2016).

    Google Scholar 

  64. S.J. Pennycook, D.E. Jesson, Phys. Rev. Lett. 64, 938 (1990).

    Google Scholar 

  65. S.J. Pennycook, D.E. Jesson, Ultramicroscopy 37, 14 (1991).

    Google Scholar 

  66. H. Kim, J.Y. Zhang, S. Raghavan, S. Stemmer, Phys. Rev. X 6, 041063 (2016).

    Google Scholar 

Download references

Acknowledgements

The authors are grateful to the collaborators that made the work presented and cited here, in particular, S.T. Pantelides, A.Y. Borisevich, P. Gao, N. Shibata, and Y. Ikuhara. R.M. acknowledges financial support through the National Science Foundation (Grant No. DMREF-1729787). Research at Oak Ridge National Laboratory was supported by the Division of Materials Sciences and Engineering, Office of Basic Energy Sciences. S.J.P. is grateful to the National University of Singapore for funding.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mishra, R., Ishikawa, R., Lupini, A.R. et al. Single-atom dynamics in scanning transmission electron microscopy. MRS Bulletin 42, 644–652 (2017). https://doi.org/10.1557/mrs.2017.187

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/mrs.2017.187

Navigation