Skip to main content
Log in

Atom-by-atom fabrication by electron beam via induced phase transformations

  • Single Atom Fabrication with Beams and Probes
  • Published:
MRS Bulletin Aims and scope Submit manuscript

Abstract

New developments in manufacturing and automation, from three-dimensional printing to the “Internet of things,” signify dramatic changes in our society. The push toward quantum materials is driving device fabrication toward atomic precision. Recent results suggest that scanning transmission electron microscopy (STEM) with sub-angstrom scale beams could offer a solution. However, a detailed theoretical understanding of the interaction of the electron beam with solids is needed to form a basis for new technology. This article summarizes the existing literature on electron-beam interactions with solids with a focus on irreversible transformation. We further suggest that the theoretical framework of a two-temperature model developed for fast ion damage in solids could be applicable to predicting the effects of fast electrons. Recent results from STEM-directed epitaxial growth on crystalline–amorphous interfaces are discussed in detail. Finally, perspectives on the development of this field in the near future are offered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. K. Schwab, The Fourth Industrial Revolution (Crown Business, New York, 2017).

    Google Scholar 

  2. C. Jones, AMIE at Night (2015), https://www.flickr.com/photos/oakridgelab/21492967818/in/album-72157658718524166.

  3. C. Jones, AMIE Printed Utility Vehicle (2015), https://www.flickr.com/photos/oakridgelab/21010174424/in/album-72157658718524166.

  4. M.S. Mannoor, Z. Jiang, T. James, Y.L. Kong, K.A. Malatesta, W.O. Soboyejo, N. Verma, D.H. Gracias, M.C. McAlpine, Nano Lett. 13 (6), 2634 (2013).

    Google Scholar 

  5. R.R. Dehoff, M.M. Kirka, W.J. Sames, H. Bilheux, A.S. Tremsin, L.E. Lowe, S.S. Babu, Mater. Sci. Technol. 31 (8), 931 (2015).

    Google Scholar 

  6. W. Zhou, F.A. List, C.E. Duty, S.S. Babu, Metall. Mater. Trans. B 46 (3), 1542 (2015).

    Google Scholar 

  7. R. Winkler, F.-P. Schmidt, U. Haselmann, J.D. Fowlkes, B.B. Lewis, G. Kothleitner, P.D. Rack, H. Plank, ACS Appl. Mater. Interfaces 9 (9), 8233 (2017).

    Google Scholar 

  8. S. Jesse, Q. He, A.R. Lupini, D.N. Leonard, M.P. Oxley, O. Ovchinnikov, R.R. Unocic, A. Tselev, M. Fuentes-Cabrera, B.G. Sumpter, S.J. Pennycook, S.V. Kalinin, A.Y. Borisevich, Small 11 (44), 5895 (2015).

    Google Scholar 

  9. X.X. Yang, R.H. Wang, H.P. Yan, Z. Zhang, Mater. Sci. Eng. B 49 (1), 5 (1997).

    Google Scholar 

  10. R.C. Birtcher, Philos. Mag. B 73 (4), 677 (1996).

    Google Scholar 

  11. Z.L. Wang, N. Itoh, N. Matsunami, Q.T. Zhao, Nucl. Instrum. Methods Phys. Res. B 100 (4), 493 (1995).

    Google Scholar 

  12. Z.C. Li, H. Zhang, Y.B. Xu, Mater. Sci. Semicond. Process. 7 (1–2), 19 (2004).

    Google Scholar 

  13. Z.W. Xu, A.H.W. Ngan, Philos. Mag. Lett. 84 (11), 719 (2004).

    Google Scholar 

  14. G. Lulli, P.G. Merli, Phys. Rev. B Condens. Matter 47 (21), 14023 (1993).

    Google Scholar 

  15. N. Jiang, Rep. Prog. Phys. 79 (1), 016501 (2016).

    Google Scholar 

  16. L. Reimer, Transmission Electron Microscopy: Physics of Image Formation and Microanalysis, 2nd ed. (Springer-Verlag, Berlin, Heidelberg, 1989).

  17. L.W. Hobbs, in Quantitative Electron Microscopy, J.N. Chapman, A.J. Craven, Eds. (Scottish Universities Summer School in Physics, Edinburgh, UK, 1984), pp. 399–445.

  18. R.F. Egerton, R. McLeod, F. Wang, M. Malac, Ultramicroscopy 110 (8), 991 (2010).

    Google Scholar 

  19. M.N. Kabler, R.T. Williams, Phys. Rev. B Condens. Matter 18 (4), 1948 (1978).

    Google Scholar 

  20. L.W. Hobbs, M.R. Pascucci, J. Phys. Colloques 41 (C6), C6-237–C6-242 (1980).

  21. L.W. Hobbs, Scanning Microsc. Suppl. 4, 171 (1990).

    Google Scholar 

  22. C. Humphreys, Scanning Microsc. Suppl. 4, 185 (1990).

    Google Scholar 

  23. J. Cazaux, Ultramicroscopy 60 (3), 411 (1995).

    Google Scholar 

  24. N. Jiang, J. Phys. D Appl. Phys. 46 (30), 305502 (2013).

    Google Scholar 

  25. N. Jiang, Micron 83, 79 (2016).

    Google Scholar 

  26. N. Jiang, Microelectron. Eng. 168, 41 (2017).

    Google Scholar 

  27. A.M. Brown, R. Sundararaman, P. Narang, W.A. Goddard, H.A. Atwater, Phys. Rev. B Condens. Matter 94 (7), 075120 (2016).

    Google Scholar 

  28. D. Su, N. Jiang, J.C. Spence, F. He, W.T. Petuskey, J. Appl. Phys. 104 (6), 063514 (2008).

    Google Scholar 

  29. C.L. Chen, H. Furusho, H. Mori, Philos. Mag. Lett. 89 (2), 113 (2009).

    Google Scholar 

  30. N. Jiang, J.C. Spence, Ultramicroscopy 111 (7), 860 (2011).

    Google Scholar 

  31. D. Su, Anal. Bioanal. Chem. 374 (4), 732 (2002).

    Google Scholar 

  32. M. Kaganov, I. Lifshitz, L. Tanatarov, Sov. Phys. JETP 4 (2), 173 (1957).

    Google Scholar 

  33. A. Meftah, J. Costantini, M. Djebara, N. Khalfaoui, J. Stoquert, F. Studer, M. Toulemonde, Nucl. Instrum. Methods Phys. Res. B 122 (3), 470 (1997).

    Google Scholar 

  34. A.M. Brown, R. Sundararaman, P. Narang, A.M. Schwartzberg, W.A. Goddard, H.A. Atwater, Phys. Rev. Lett. 118 (8), 087401 (2017).

    Google Scholar 

  35. M. Toulemonde, W. Assmann, C. Dufour, A. Meftah, F. Studer, C. Trautmann, Mat. Fys. Medd. K. Dan. Vidensk. Selsk. 52, 263 (2006).

    Google Scholar 

  36. E. Zarkadoula, O.H. Pakarinen, H. Xue, Y Zhang, W.J. Weber, Phys. Chem. Chem. Phys. 17 (35), 22538 (2015).

    Google Scholar 

  37. W.J. Weber, E. Zarkadoula, O.H. Pakarinen, R. Sachan, M.F. Chisholm, P. Liu, H. Xue, K. Jin, Y. Zhang, Sci. Rep. 5, 7726 (2015).

    Google Scholar 

  38. C.O. Girit, J.C. Meyer, R. Erni, M.D. Rossell, C. Kisielowski, L. Yang, C.H. Park, M.F. Crommie, M.L. Cohen, S.G. Louie, A. Zettl, Science 323 (5922), 1705 (2009).

    Google Scholar 

  39. M.D. Fischbein, M. Drndic, Appl. Phys. Lett. 93 (11), 113107 (2008).

    Google Scholar 

  40. B. Song, G.F. Schneider, Q. Xu, G. Pandraud, C. Dekker, H. Zandbergen, Nano Lett. 11 (6), 2247 (2011).

    Google Scholar 

  41. J. Lin, O. Cretu, W. Zhou, K. Suenaga, D. Prasai, K.I. Bolotin, N.T. Cuong, M. Otani, S. Okada, A.R. Lupini, J.-C. Idrobo, D. Caudel, A. Burger, N.J. Ghimire, J. Yan, D.G. Mandrus, S.J. Pennycook, S.T. Pantelides, Nat. Nanotechnol. 9 (6), 436 (2014).

    Google Scholar 

  42. A.Y. Borisevich, A.R. Lupini, S.J. Pennycook, Proc. Natl. Acad. Sci. U.S.A. 103 (9), 3044 (2006).

    Google Scholar 

  43. Y. Zhang, J. Lian, C.M. Wang, W. Jiang, R.C. Ewing, W.J. Weber, Phys. Rev. B Condens. Matter 72 (9), 094112 (2005).

    Google Scholar 

  44. T.T. Tran, K. Bray, M.J. Ford, M. Toth, I. Aharonovich, Nat. Nanotechnol. 11, (1), 37 (2016).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiang, N., Zarkadoula, E., Narang, P. et al. Atom-by-atom fabrication by electron beam via induced phase transformations. MRS Bulletin 42, 653–659 (2017). https://doi.org/10.1557/mrs.2017.183

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/mrs.2017.183

Navigation