Skip to main content
Log in

Ultrabright and monochromatic nanowire electron sources

  • Electron-Emission Materials
  • Published:
MRS Bulletin Aims and scope Submit manuscript

Abstract

The resolution of the electron microscope is now largely limited by the performance of its electron source when various aberrations in the electron imaging system, especially spherical aberrations, are corrected. A nanowire tip could be an ideal point electron source, where electrons are emitted from a small physical area. In this article, we review recent advances in electric-field-induced electron emission using a single nanowire, specifically, single-crystalline lanthanum hexaboride (LaB6) nanowire, compared to the state-of-the-art contemporary tungsten cold-field electron emitter W(310) as well as single atom tip and single-carbon nanotube emitters. Owing to its low work function, improved emission stability, and high emission brightness, the LaB6 nanowire as a cold-field-emission electron source offers a new and exciting opportunity for developing the next generation of electron microscopes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. R.H. Fowler, L. Nordheim, Proc. R. Soc. Lond. A 119, 173 (1928).

    Google Scholar 

  2. M. Rezeq, J. Pitters, R. Wolkow, J. Chem. Phys. 124, 204716 (2006).

    Google Scholar 

  3. C. Oshima, E. Rokuta, T. Itagaki, T. Ishikawa, B. Cho, e-J. Surf. Sci. Nanotechnol. 3, 412 (2005).

    Google Scholar 

  4. L. Swanson, G. Schwind, Adv. Imaging Elect. Phys. 159, 63 (2009).

    Google Scholar 

  5. A.V. Crewe, J. Wall, J. Langmore, Science 168, 1338 (1970).

    Google Scholar 

  6. R.C. Smith, D.C. Cox, S.R.P. Silva, Appl. Phys. Lett. 87, 103112 (2005).

    Google Scholar 

  7. M.S. Wang, Q. Chen, L.M. Peng, Small 4, 1907 (2008).

    Google Scholar 

  8. H. Zhang, J. Tang, J. Yuan, Y. Yamauchi, T.T. Suzuki, N. Shinya, K. Nakajima, L.-C. Qin, Nat. Nanotechnol. 11, 273 (2016).

    Google Scholar 

  9. G.P. Zhao, Q. Zhang, H. Zhang, G. Yang, O. Zhou, L.-C. Qin, J. Tang, Appl. Phys. Lett. 89, 263113 (2006).

    Google Scholar 

  10. H.J. Fan, P. Werner, M. Zacharias, Small 2, 700 (2006).

    Google Scholar 

  11. X.S. Fang, L.D. Zhang, J. Mater. Sci. Technol. 22, 1 (2006).

    Google Scholar 

  12. J. Zheng, R. Yang, L. Xie, J. Qu, Y. Liu, X. Li, Adv. Mater. 22, 1451 (2010).

    Google Scholar 

  13. C.A. Spindt, C.E. Holland, R.D. Stowell, Appl. Surf. Sci. 16, 268 (1983).

    Google Scholar 

  14. P.R. Schwoebel, C.A. Spindt, C.E. Holland, J. Vac. Sci. Technol. B 23, 691 (2005).

    Google Scholar 

  15. R.G. Forbes, Solid State Electron. 45, 779 (2001).

    Google Scholar 

  16. S.S. Fan, M.G. Chapline, N.R. Franklin, T.W. Tombler, A.M. Cassell, H.J. Dai, Science 283, 512 (1999).

    Google Scholar 

  17. Y. Sun, J.T.W. Yeow, D.A. Jaffray, Small 9, 3385 (2013).

    Google Scholar 

  18. T.Y. Zhai, L. Li, Y. Ma, M.Y. Liao, X. Wang, X.S. Fang, J.N. Yao, Y. Bando, D. Golberg, Chem. Soc. Rev. 40, 2986 (2011).

    Google Scholar 

  19. M. Nagao, T. Yoshida, Microelectron. Eng. 132, 14 (2015).

    Google Scholar 

  20. X.S. Fang, Y. Bando, U.K. Gautam, C.H. Ye, D. Golberg, J. Mater. Chem. 18, 509 (2008).

    Google Scholar 

  21. H. Zhang, Q. Zhang, G.P. Zhao, J. Tang, O. Zhou, L.-C. Qin, J. Am. Chem. Soc. 127, 13120 (2005).

    Google Scholar 

  22. H. Zhang, J. Tang, Q. Zhang, G.P. Zhao, G. Yang, J. Zhang, O. Zhou, L.-C. Qin, Adv. Mater. 18, 87 (2006).

    Google Scholar 

  23. H. Zhang, J. Tang, J. Yuan, J. Ma, N. Shinya, K. Nakajima, H. Murakami, T. Ohkubo, L.-C. Qin, Nano Lett. 10, 3539 (2010).

    Google Scholar 

  24. G.P. Zhao, J. Zhang, Q. Zhang, H. Zhang, O. Zhou, L.-C. Qin, J. Tang, Appl. Phys. Lett. 89, 193113 (2006).

    Google Scholar 

  25. J.S. Yuan, H. Zhang, J. Tang, N. Shinya, K. Nakajima, L.-C. Qin, Appl. Phys. Lett. 100, 113111 (2012).

    Google Scholar 

  26. J.S. Yuan, H. Zhang, J. Tang, N. Shinya, K. Nakajima, L.-C. Qin, J. Am. Ceram. Soc. 95, 2352 (2012).

    Google Scholar 

  27. H. Shimoyama, S. Maruse, Ultramicroscopy 15, 239 (1984).

    Google Scholar 

  28. M.S. Bronsgeest, J.E. Barth, L.W. Swanson, P. Kruit, J. Vac. Sci. Technol. B 26, 949 (2008).

    Google Scholar 

  29. G.A. Schwind, G. Mager, L.W. Swanson, J. Vac. Sci. Technol. B 24, 2897 (2006).

    Google Scholar 

  30. N. de Jonge, M. Allioux, J.T. Oostveen, K.B.K. Teo, W.I. Milne, Phys. Rev. Lett. 94, 186807 (2005).

    Google Scholar 

  31. L.W. Swanson, N.A. Martin, J. Appl. Phys. 46, 2029 (1975).

    Google Scholar 

  32. F. Rahman, J. Onoda, K. Imaizumi, S. Mizuno, Surf. Sci. 602, 2128 (2008).

    Google Scholar 

  33. H. Nakahara, Y. Kusano, T. Kono, Y. Saito, Appl. Surf. Sci. 256, 1214 (2009).

    Google Scholar 

  34. I.-S. Hwang, H.-S. Kuo, C.-C. Chang, T.T. Tsong, J. Electrochem. Soc. 157, P7 (2010).

    Google Scholar 

  35. S. Yamamoto, Rep. Prog. Phys. 69, 181 (2006).

    Google Scholar 

  36. T. Yamashita, K. Matsuda, T. Kona, Y. Mogami, M. Komaki, Y. Murata, C. Oshima, T. Kuzumaki, Y. Horiike, Surf. Sci. 514, 283 (2002).

    Google Scholar 

  37. T. Ishikawa, B. Cho, E. Rokuta, C. Oshima, Appl. Phys. Express 1, 077001 (2008).

    Google Scholar 

  38. P. Kruit, M. Bezuijen, J.E. Barth, J. Appl. Phys. 99, 024315 (2006).

    Google Scholar 

  39. M.R. Scheinfein, W. Qian, J.C.H. Spence, J. Appl. Phys. 73, 2057 (1993).

    Google Scholar 

  40. K.L. Jensen, J. Appl. Phys. 107, 014905 (2010).

    Google Scholar 

  41. W. Qian, M.R. Scheinfein, J.C.H. Spence, J. Appl. Phys. 73, 7041 (1993).

    Google Scholar 

  42. C.C. Chang, H.S. Kuo, I.S. Hwang, T.T. Tsong, Nanotechnology 20, 115401 (2009).

    Google Scholar 

  43. M.J. Fransen, M.H.F. Overwijk, P. Kruit, Appl. Surf. Sci. 146, 357 (1999).

    Google Scholar 

  44. F. Houdellier, A. Masseboeuf, M. Monthioux, M.J. Hytch, Carbon 50, 2037 (2012).

    Google Scholar 

  45. S. Yamamoto, S. Fukuhara, H. Okano, N. Saito, Jpn. J. Appl. Phys. 15, 1643 (1976).

    Google Scholar 

  46. K. Christmann, Surf. Sci. Rep. 9, 1 (1988).

    Google Scholar 

  47. A.G. Naumovets, Y.S. Vedula, Surf. Sci. Rep. 4, 365 (1985).

    Google Scholar 

  48. K. Kasuya, S. Katagiri, T. Ohshima, S. Kokubo, J. Vac. Sci. Technol. B 28, L55 (2010).

    Google Scholar 

  49. K. Kasuya, S. Katagiri, T. Ohshima, J. Vac. Sci. Technol. B 34, 042202 (2016).

    Google Scholar 

  50. S. Yamamoto, S. Hosoki, S. Fukuhara, M. Futamoto, Surf. Sci. 86, 734 (1979).

    Google Scholar 

  51. B.E. Nieuwenhuys, Surf. Sci. 59, 430 (1976).

    Google Scholar 

  52. M. Futamoto, S. Hosoki, H. Okano, U. Kawabe, J. Appl. Phys. 48, 3541 (1977).

    Google Scholar 

  53. N. de Jonge, M. Allioux, J.T. Oostveen, K.B.K. Teo, W.I. Milne, Appl. Phys. Lett. 87, 133118 (2005).

    Google Scholar 

  54. Y. Akamine, K. Fujiwara, C. Oshima, B. Cho, J. Vac. Sci. Technol. B 29, 041808 (2011).

    Google Scholar 

  55. E. Rokuta, H.S. Kuo, T. Itagaki, K. Nomura, T. Ishikawa, B.L. Cho, I.S. Hwang T.T. Tsong, C. Oshima, Surf. Sci. 602, 2508 (2008).

    Google Scholar 

  56. V.T. Binh, S.T. Purcell, N. Garcia, J. Doglioni, Phys. Rev. Lett. 69, 2527 (1992).

    Google Scholar 

  57. M.A. Uijttewaal, G.A. de Wijs, R.A. de Groot, J. Phys. Chem. B 110, 18459 (2006).

    Google Scholar 

  58. O. Krivanek, M. Chisholm, V. Nicolosi, T. Pennycook, G. Corbin, N. Dellby, M. Murfitt, C. Own, Z. Szilagyi, M. Oxley, S. Pantelides, S. Pennycook, Nature 464, 571 (2010).

    Google Scholar 

  59. O. Krivanek, T. Lovejoy, N. Dellby, T. Aoki, R. Carpenter, P. Rez, E. Soignard J. Zhu, P. Batson, M. Lagos, R. Egerton, P. Crozier, Nature 514, 209 (2014).

    Google Scholar 

  60. M. Kruger, M. Schenk, P. Hommelhoff, Nature 475, 78 (2011).

    Google Scholar 

  61. S. Aseyev, P. Weber, A. Ischenko, J. Anal. Sci. Methods Instrum. 3, 30 (2013).

    Google Scholar 

Download references

Acknowledgements

The authors wish to acknowledge the Japan Science and Technology Corporation and the Nanotechnology Network Project of the Ministry of Education, Culture, Sports, Science, and Technology for financial support as well as the Hitachi High-Technology Corporation for their cooperation in this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Han Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, H., Tang, J., Yuan, J. et al. Ultrabright and monochromatic nanowire electron sources. MRS Bulletin 42, 511–517 (2017). https://doi.org/10.1557/mrs.2017.144

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/mrs.2017.144

Navigation