Skip to main content
Log in

A holistic view of nucleation and self-assembly

  • Technical Feature
  • Published:
MRS Bulletin Aims and scope Submit manuscript

Abstract

Nucleation is the seminal process in the formation of ordered structures ranging from simple inorganic crystals to macromolecular matrices. Observations over the past 15 years have revealed a rich set of hierarchical nucleation pathways involving higher-order species ranging from multi-ion clusters to dense liquid droplets, as well as transient crystalline or amorphous phases. Despite this complexity, the pathways that lead to nucleation can be described by a holistic framework that is rooted in classical concepts, but which takes into account the coupled effects of perturbations in free-energy landscapes and the impact of dynamical factors. This article describes that framework using a series ofin situ transmission electron microscopy and atomic force microscopy studies on inorganic, organic, and macromolecular systems to illustrate the evolution in nucleation processes as these perturbations and dynamical factors come into play. The results provide a common basis for understanding development of order in systems as diverse as simple salt crystals, branched semiconductor nanowires, and microbial membranes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. J.W. Gibbs, A.W. Smith, in Trans. Conn. Acad. Arts Sci. 3, 343 (1878).

    Google Scholar 

  2. R. Becker, W. Doring, Ann. Phys. (Berlin) 24, 719 (1935).

    Google Scholar 

  3. J.J. De Yoreo, P.U.P.A. Gilbert, N.A.J.M. Sommerdijk, R.L. Penn, S. Whitelam, D. Joester, H.Z. Zhang, J.D. Rimer, A. Navrotsky, J.F. Banfield, A.F. Wallace, F.M. Michel, F.C. Meldrum, H. Cölfen, P.M. Dove, Science 349, 498 (2015).

    Google Scholar 

  4. D. Kashchiev, Nucleation: Basic Theory with Applications (Butterworth-Heinemann, Oxford, UK, 2000).

    Google Scholar 

  5. J.J. De Yoreo, P.G. Vekilov, in Biomineralization, P.M. Dove, J.J. De Yoreo, S. Weiner, Eds. (Mineralogical Society of America, Washington, DC, 2003), vol. 54, pp. 57–93.

  6. W.J.E.M. Habraken, J. Tao, L.J. Brylka, H. Friedrich, A.S. Schenk, A. Verch, P.H.H. Bomans, P.M. Frederik, J. Laven, P. van der Schoot, B. Aichmayer, B.G. de With, J.J. De Yoreo, Nat. Commun. 4, 1507 (2013), doi:10.1038/ncomms2490.

    Google Scholar 

  7. R. Demichelis, P. Raiteri, J.D. Gale, D. Quigley, D. Gebauer, Nat. Commun. 2, 8 (2011).

    Google Scholar 

  8. P.G. Vekilov, J. Cryst. Growth 275, 65 (2005).

    Google Scholar 

  9. M.H. Nielsen, S. Aloni, J.J. De Yoreo, Science 345, 1158 (2014).

    Google Scholar 

  10. S. Weiner, W. Traub, H.D. Wagner, J. Struct. Biol. 126, 241 (1999).

    Google Scholar 

  11. P.M. Dove, J.J. De Yoreo, S. Weiner, Eds., Biomineralization (Mineralogical Society of America, Washington DC, 2003), vol. 54.

  12. Q. Hu, M.H. Nielsen, C.L. Freeman, L.M. Hamm, J. Tao, J.R.I. Lee, T.Y.J. Han, U. Becker, J.H. Harding, P.M. Dove, J.J. De Yoreo, Faraday Discuss. 159, 509 (2012).

    Google Scholar 

  13. L. Addadi, S. Weiner, Proc. Natl. Acad. Sci. U.S.A. 82, 4110 (1985).

    Google Scholar 

  14. L. Addadi, J. Moradian, E. Shay, N.G. Maroudas, S. Weiner, Proc. Natl. Acad. Sci. U.S.A. 84, 2732 (1987).

    Google Scholar 

  15. S. Weiner, I. Sagi, L. Addadi, Science 309, 1027 (2005).

    Google Scholar 

  16. P.J.M. Smeets, K.R. Cho, R.G.E. Kempen, N.A.J.M. Sommerdijk, J.J. De Yoreo, Nat. Mater. 14, 394 (2015).

    Google Scholar 

  17. S. Mann, Angew. Chem. Int. Ed. 47, 5306 (2008).

    Google Scholar 

  18. U.B. Sleytr, P. Messner, D. Pum, M. Sara, Angew. Chem. Int. Ed. 38, 1035 (1999).

    Google Scholar 

  19. S. Chung, S.H. Shin, C.R. Bertozzi, J.J. De Yoreo, Proc. Natl. Acad. Sci. U.S.A. 107, 16536 (2010).

    Google Scholar 

  20. S.H. Shin, S. Chung, B. Sanii, L.R. Comolli, C.R. Bertozzi, J.J. De Yoreo Proc. Natl. Acad. Sci. U.S.A. 109, 12968 (2012).

  21. J.J. De Yoreo, S. Chung, R.W. Friddle, Adv. Funct. Mater. 23, 2525 (2013).

    Google Scholar 

  22. J.J. De Yoreo, N.A.J.M. Sommerdijk, Nat. Rev. Mater. 1, 16035 (2016), doi:10.1038/natrevmats.2016.35.

    Google Scholar 

  23. F.M. Ross, Science 350, 043701 (2015), doi:10.1126/science.aaa9886.

    Google Scholar 

  24. T. Fukuma, S.P. Jarvis, Rev. Sci. Instrum. 77, 043701 (2006), doi:http://dx.doi.org/10.1063/1.2188867.

    Google Scholar 

  25. M. Ricci, P. Spijker, K. Voitchovsky, Nat. Commun. 5, 4400 (2014), doi:10.1038/ncomms5400.

    Google Scholar 

  26. T.S. Li, D. Donadio, G. Galli, Nat. Commun. 4, 1887 (2013), doi:10.1038/ncomms2918.

    Google Scholar 

Download references

Acknowledgements

This work was supported by the US Department of Energy (DOE), Office of Basic Energy Sciences, Division of Materials Science and Engineering at Pacific Northwest National Laboratory (PNNL). PNNL is a multiprogram national laboratory operated for DOE by Battelle under Contract No. DE-AC05–76RL01830.

Author information

Authors and Affiliations

Authors

Additional information

The following article is based on the David Turnbull Lectureship given by James J. De Yoreo at the 2016 MRS Fall Meeting in Boston. He is cited “for discoveries that have shaped our understanding of crystallization science.”

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

De Yoreo, J.J. A holistic view of nucleation and self-assembly. MRS Bulletin 42, 525–536 (2017). https://doi.org/10.1557/mrs.2017.143

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/mrs.2017.143

Navigation