Skip to main content

Advertisement

Log in

Carbon nanotube photothermionics: Toward laser-pointer-driven cathodes for simple free-electron devices and systems

  • Electron-Emission Materials
  • Published:
MRS Bulletin Aims and scope Submit manuscript

Abstract

Light-induced generation of free electrons is of interest for a wide variety of vacuum electronic devices and systems. The properties of nanomaterials, stemming from their geometry and the strong manifestation of quantum phenomena in them, have opened up new avenues for developing new cathodes and exploring and exploiting electron emission. This article presents the heat trap effect—efficient localized heating of carbon nanotube arrays using light, leading to electron emission through the thermionic mechanism. This process requires unexpectedly modest amounts of optical power—available from sources such as handheld lasers—and dramatically simplifies the electron emitter. Potential applications, including thermionic and thermoelectric conversion for solar-energy harvesting and simple electron-beam systems, are also highlighted.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. K.L. Jensen, J. Appl. Phys. 102, 024911 (2007).

    Google Scholar 

  2. S. Uchiyama, Y. Takagi, M. Niigaki, H. Kan, H. Kondoh, Appl. Phys. Lett. 86 103511 (2005).

  3. Z.-P. Yang, L. Ci, J.A. Bur, S.-Y. Lin, P.M. Ajayan, Nano Lett. 8, 446 (2008).

    Google Scholar 

  4. M.B. Jakubinek, M.A. White, G. Li, C. Jayasinghe, W. Cho, M.J. Schulz, V. Shanov, Carbon 48, 3947 (2010).

    Google Scholar 

  5. M.Vahdani Moghaddam, P. Yaghoobi, A. Nojeh,Appl. Phys. Lett. 101, 253110 (2012).

  6. P. Yaghoobi, M. Vahdani Moghaddam, A. Nojeh, Solid State Commun. 151 1105 (2011).

  7. M. Monshipouri, Y. Abdi, S. Darbari, Appl. Phys. Lett. 109, 203105 (2016).

    Google Scholar 

  8. Z. Li, B. Bai, C. Li, Q. Dai, Carbon 96, 641 (2016).

    Google Scholar 

  9. R. Hendrix, J.A. Deibel, S.B. Fairchild, B. Maruyama, A. Urbas, M. Walker D. Brown, Proc. OSA Conf. Lasers Electro-Optics Appl. Technol. (2015), p. JW2A-53.

  10. P. Yaghoobi, M.Vahdani Moghaddam, A. Nojeh, AIP Adv. 2, 042139 (2012).

    Google Scholar 

  11. K.A.Abdul Khalid, T.J. Leong, K. Mohamed, IEEE Trans. Electron Devices 63, 2231 (2016).

    Google Scholar 

  12. K. Dridi, A. Khoshaman, A. Nojeh, G.A. Sawatzky, Proc. 29th Int. Vac. Nanoelectron. Conf., A. Nojeh, K. Dridi, K. Voon, M. Chowdhury, Eds. (2016). p. 1.

  13. H.D.E. Fan, “Laser-Induced Thermoelectric Energy Generation Using Carbon Nanotube Forests,” MASc thesis, The University of British Columbia, Vancouver Canada (2015).

  14. A. Lenert, D.M. Bierman, Y Nam, W.R.Chan, I. Celanovic, M.Soljac i c, E.N.Wang Nat. Nanotechnol. 9, 126 (2014).

  15. M. Vahdani Moghaddam, A. Nojeh, Proc. 57th Int. Conf. Electron Ion Photon Beam Technol. Nanofabr, R. Cheung, Ed. (2013), 1A-5.

  16. M. Chang, K. Dridi, A. Nojeh, R.F.W. Pease, Tech. Dig. 29th Int. Vac. Nanoelectron. Conf., A. Nojeh, K. Dridi, K. Voon, M. Chowdhury, Eds. (2016). p. 144.

  17. M. Chang, M. Vahdani Moghaddam, A. Nojeh, Proc. 27th Int. Vac. Nanoelectron. Conf., S. Tsujino, J. Gobrecht, M. Paraliev, H.-H. Braun, O. Groening T. Feurer, Eds. (2014), p. 34.

  18. M. Chang, M. Dahmardeh, M. Vahdani Moghaddam, S.M. Mirvakili, J.D.W. Madden, K. Takahata, A. Nojeh, Proc. 58th Int. Conf. Electron Ion Photon Beam Technol. Nanofabr, K.K. Berggren, Ed. (2014), P02–02.

  19. E. Pop, D. Mann, Q. Wang, K. Goodson, H. Dai, Nano Lett. 6, 96 (2006).

    Google Scholar 

  20. P. Yaghoobi, “Laser-Induced Electron Emission from Arrays of Carbon Nanotubes,” PhD thesis, The University of British Columbia, Vancouver, Canada (2012).

  21. I.-K. Hsu, R. Kumar, A. Bushmaker, S.B. Cronin, M.T. Pettes, L. Shi, T. Brintlinger M.S. Fuhrer, J. Cumings, Appl. Phys. Lett. 92, 063119 (2008).

    Google Scholar 

  22. I.-K. Hsu, M.T. Pettes, A. Bushmaker, M. Aykol, L. Shi, S.B. Cronin, Nano Lett. 9, 590 (2009).

    Google Scholar 

  23. I.-K. Hsu, M.T. Pettes, M. Aykol, C.-C. Chang, W.-H. Hung, J. Theiss, L. Shi S.B. Cronin, J. Appl. Phys. 110, 044328 (2011).

    Google Scholar 

  24. D. Rossouw, M. Bugnet, G.A. Botton, Phys. Rev. B Condens. Matter 87, 125403 (2013).

    Google Scholar 

  25. A.E. Aliev, M.H. Lima, E.M. Silverman, R.H. Baughman, Nanotechnology 21, 035709 (2010).

    Google Scholar 

  26. A. Duzynska, A. Taube, K.P. Korona, J. Judek, M. Zdrojek, Appl. Phys. Lett. 106, 183108 (2015).

    Google Scholar 

  27. Z.H. Lim, A. Lee, K.Y.Y. Lim, Y. Zhu, C.-H. Sow, J. Appl. Phys. 107, 064319 (2010).

    Google Scholar 

  28. Y. Fan, S.B. Singer, R. Bergstrom, B.C. Regan, Phys. Rev. Lett. 102, 187402 (2009).

    Google Scholar 

  29. S.B. Singer, M. Mecklenburg, E.R. White, B.C. Regan, Phys. Rev. B Condens. Matter 84, 195468 (2011).

    Google Scholar 

  30. M. Mecklenburg, W.A. Hubbard, E.R. White, R. Dhall, S.B. Cronin, S. Aloni B.C. Regan, Science 347, 629 (2015).

    Google Scholar 

  31. S.T. Purcell, P. Vincent, C. Journet, V.T. Binh, Phys. Rev. Lett. 88, 105502 (2002).

    Google Scholar 

  32. D.C. Cox, R.D. Forrest, P.R. Smith, S.R.P. Silva, Appl. Phys. Lett. 85, 2065 (2004).

    Google Scholar 

  33. P. Liu, Y. Wei, K. Jiang, Q. Sun, X. Zhang, S. Fan, S. Zhang, C. Ning, J. Deng, Phys. Rev. B Condens. Matter 73, 235412 (2006).

    Google Scholar 

  34. Y. Wei, K. Jiang, X. Feng, P. Liu, L. Liu, S. Fan, Phys. Rev. B Condens. Matter 76, 045423 (2007).

    Google Scholar 

  35. T.-H. Wong, M.C. Gupta, C. Hernandez-Garcia, Nanotechnology 18, 135705 (2007).

    Google Scholar 

  36. S.K. Kolekar, S.P. Patole, P.S. Alegaonkar, J.B. Yoo, C.V. Dharmadhikari, Appl. Surf. Sci. 257, 10306 (2011).

    Google Scholar 

  37. S.-J. Liang, L.K. Ang, Phys. Rev. Appl. 3, 014002 (2015).

    Google Scholar 

  38. M. Massicotte, P. Schmidt, F. Vialla, K. Watanabe, T. Taniguchi, K.J. Tielrooij, F.H.L. Koppens, Nat. Commun. 7, 12174 (2016).

    Google Scholar 

  39. S. Tan, A. Argondizzo, C. Wang, X. Cui, H. Petek, Phys. Rev. X 7, 011004 (2017).

    Google Scholar 

  40. J.W. Schwede, I. Bargatin, D.C. Riley, B.E. Hardin, S.J. Rosenthal, Y. Sun, F. Schmitt, P. Pianetta, R.T. Howe, Z.-X. Shen, N.A. Melosh, Nat. Mater. 9, 762 (2010).

    Google Scholar 

  41. M. Girolami, L. Criante, F. Di Fonzo, S. Lo Turco, A. Mezzetti, A. Notargiacomo, M. Pea, A. Bellucci, P. Calvani, V. Valentini, D.M. Trucchi, Carbon 111, 48 (2017).

    Google Scholar 

  42. M. Vahdani Moghaddam, P. Yaghoobi, G.A. Sawatzky, A. Nojeh, ACS Nano 9, 4064 (2015).

    Google Scholar 

  43. J.H. Bechtel, W.L. Smith, N. Bloembergen, Phys. Rev. B Condens. Matter 15, 4557 (1977).

    Google Scholar 

  44. T.L. Westover, A.D. Franklin, B.A. Cola, T.S. Fisher, R.G. Reifenberger, J. Vac. Sci. Technol. B 28, 423 (2010).

    Google Scholar 

  45. J. Yuan, H. Zhang, J. Tang, N. Shinya, K. Nakajima, L.-C. Qin, J. Am. Ceram. Soc. 95, 2352 (2012).

    Google Scholar 

  46. J. Xu, Y. Zhao, C. Zou, Chem. Phys. Lett. 423, 138 (2006).

    Google Scholar 

  47. T.T. Xu, J.-G. Zheng, A.W. Nicholls, S. Stankovich, R.D. Piner, R.S. Ruoff, Nano Lett. 4, 2051 (2004).

    Google Scholar 

  48. C.Y. Zou, Y.M. Zhao, J.Q. Xu, J. Cryst. Growth 291, 112 (2006).

    Google Scholar 

  49. D.K. De, O.C. Olawole, Proc. 3rd Int. Conf. African Dev. Issues, O. Solomon, Ed. (2016), p. 58.

  50. O.C. Olawole, D.K. De, Proc. SPIE 9927, E.M. Campo, E.A. Dobisz, L.A. Eldada, Eds. (2016), p. 992716.

  51. Q. Ma, T.I. Andersen, N.L. Nair, N.M. Gabor, M. Massicotte, C.H. Lui, A.F. Young, W. Fang, K. Watanabe, T. Taniguchi, J. Kong, N. Gedik, F.H.L. Koppens, P. Jarillo-Herrero, Nat. Phys. 12, 455 (2016).

    Google Scholar 

  52. E. Pop, D. Mann, J. Cao, Q. Wang, K. Goodson, H. Dai, Phys. Rev. Lett. 95, 155505 (2005).

    Google Scholar 

Download references

Acknowledgements

The author acknowledges financial support from the Natural Sciences and Engineering Research Council of Canada (RGPIN-2017-04608, RGPAS-2017-507958, SPG-P 478867), BCFRST/the British Columbia Innovation Council, the Canada Foundation for Innovation, the British Columbia Knowledge Development Fund, and the Peter Wall Institute for Advanced Studies. This research was conducted, in part, by funding from the Canada First Research Excellence Fund, Quantum Materials and Future Technologies Program. The author also acknowledges CMC Microsystems for the provision of products and services that facilitated this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alireza Nojeh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nojeh, A. Carbon nanotube photothermionics: Toward laser-pointer-driven cathodes for simple free-electron devices and systems. MRS Bulletin 42, 500–504 (2017). https://doi.org/10.1557/mrs.2017.139

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/mrs.2017.139

Navigation