Skip to main content
Log in

Diamond x-ray optics: Transparent, resilient, high-resolution, and wavefront preserving

  • Next-Generation Materials for Synchrotron Radiation
  • Published:
MRS Bulletin Aims and scope Submit manuscript

Abstract

Diamond features a unique combination of outstanding physical properties perfect for numerous x-ray optics applications, where traditional materials such as silicon fail to perform. In the last two decades, impressive progress has been achieved in synthesizing diamond with high crystalline perfection, in manufacturing efficient, resilient, high-resolution, wavefront-preserving diamond optical components, and in implementing them in cutting-edge x-ray instruments. Diamond optics are essential for tailoring x-rays to the most challenging needs of x-ray research. They are becoming vital for the generation of fully coherent hard x-rays by seeded x-ray free-electron lasers. In this article, we review progress in manufacturing flawless diamond crystal components and their applications in diverse x-ray optical devices, such as x-ray monochromators, beam splitters, high-reflectance backscattering mirrors, lenses, phase plates, diffraction gratings, bent-crystal spectrographs, and windows.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. J.E. Field, Ed., The Properties of Natural and Synthetic Diamond (Academic Press, London, 1992).

    Google Scholar 

  2. M.A. Prelas, G. Popovici, L.K. Bigelow, Eds., Handbook of Industrial Diamonds and Diamond Films (Marcel Dekker, New York, 1998).

    Google Scholar 

  3. L. Wei, P.K. Kuo, R.L. Thomas, T.R. Anthony, W.F. Banholzer, Phys. Rev. Lett. 70, 3764 (1993).

    Google Scholar 

  4. C. Giles, C. Adriano, A.F. Lubambo, C. Cusatis, M. Irineu, M.G. Hönnicke J. Synchrotron Radiat. 12, 349 (2005).

  5. S. Stoupin, Y.V. Shvyd’ko, Phys. Rev. Lett. 104, 085901 (2010).

    Google Scholar 

  6. S. Stoupin, Y.V. Shvyd’ko, Phys. Rev. B Condens. Matter 83, 104102 (2011).

    Google Scholar 

  7. Y.V. Shvyd’ko, S. Stoupin, A. Cunsolo, A. Said, X. Huang, Nat. Phys. 6, 196 (2010).

    Google Scholar 

  8. Y.V. Shvyd’ko, S. Stoupin, V. Blank, S. Terentyev, Nat. Photonics 5, 539 (2011).

    Google Scholar 

  9. J. Als-Nielsen, A.K. Freund, ESRF Newsletter 13, 4 (1992).

    Google Scholar 

  10. A.M. Khounsary, R.K. Smither, S. Davey, A. Purohit, Proc. SPIE 1739, 628 (1993).

    Google Scholar 

  11. L.E. Berman, J. Hastings, D.P. Siddons, M. Koike, V. Stojanoff, M. Hart Nucl. Instrum. Methods Phys. Res. A 334, 617 (1993).

  12. L.E. Berman, J. Hastings, D.P. Siddons, M. Koike, V. Stojanoff, M. Hart Nucl. Instrum. Methods Phys. Res. A 329, 555 (1993).

  13. J. Als-Nielsen, A. Freund, M. Wulff, M. Hanfland, D. Häusermann, Nucl. Instrum. Methods Phys. Res. B 94, 348 (1994).

    Google Scholar 

  14. A.K. Freund, Opt. Eng. 34, 432 (1995).

    Google Scholar 

  15. Y. Pal’yanov, Y. Malinovsky, Y.M. Borzdov, A.F. Khokryakov, Dokl. Akad. Nauk SSSR 315, 233 (1990).

    Google Scholar 

  16. H. Sumiya, S. Satoh, Diam. Relat. Mater. 5, 1359 (1996).

    Google Scholar 

  17. J.P.F. Sellschop, S.H. Connell, R.W.N. Nilen, C. Detlefs, A.K. Freund, J. Hoszowska, R. Hustache, R.C. Burns, M. Rebak, J.O. Hansen, D.L. Welch, C.E. Hall, New Diam. Front. Carbon Technol. 10, 253 (2000).

    Google Scholar 

  18. H. Sumiya, N. Toda, S. Satoh, New Diam. Front. Carbon Technol. 10, 233 (2000).

    Google Scholar 

  19. M. Yabashi, S. Goto, Y. Shimizu, K. Tamasaku, H. Yamazaki, Y. Yoda, M. Suzuki, Y. Ohishi, M. Yamamoto, T. Ishikawa, AIP Conf. Proc. 879, 922 (2007).

    Google Scholar 

  20. R.C. Burns, A.I. Chumakov, S.H. Connell, D. Dube, H.P. Godfried, J.O. Hansen, J. Härtwig, J. Hoszowska, F. Masiello, L. Mkhonza, M. Rebak, A. Rommevaux, R. Setshedi, P. Van Vaerenbergh, J. Phys. Condens. Matter 21, 364224 (2009).

    Google Scholar 

  21. A. Macrander, Synchrotron Radiat. News 24, 6 (2011).

    Google Scholar 

  22. S.N. Polyakov, V.N. Denisov, N.V. Kuzmin, M.S. Kuznetsov, S.Y. Martyushov, S.A. Nosukhin, S.A. Terentyev, V.D. Blank, Diam. Relat. Mater. 20, 726 (2011).

    Google Scholar 

  23. H. Sumiya, K. Tamasaku, Jpn. J. Appl. Phys. 51, 090102 (2012).

    Google Scholar 

  24. S. Stoupin, S. Antipov, J.E. Butler, A.V. Kolyadin, A. Katrusha, J. Synchrotron Radiat. 23, 1118 (2016).

    Google Scholar 

  25. S. Terentyev, V. Blank, T. Kolodziej, Y. Shvyd’ko, Rev. Sci. Instrum. 87, 125117 (2016).

    Google Scholar 

  26. S. Terentyev, V. Blank, S. Polyakov, S. Zholudev, A. Snigirev, M. Polikarpov, T. Kolodziej, J. Qian, H. Zhou, Y. Shvyd’ko, Appl. Phys. Lett. 107, 111108 (2015).

    Google Scholar 

  27. O.I. Leipunskii, Usp. Khim. 8, 15191538 (1939).

    Google Scholar 

  28. R. Berman, S.F. Simon, Z. Elektrochem. 59, 333 (1955).

    Google Scholar 

  29. F.P. Bundy, Physica A 156, 169 (1989).

    Google Scholar 

  30. F.P. Bundy, H.T. Hall, H.M. Strong, R.H. Wentorf, Nature 176, 51 (1955).

    Google Scholar 

  31. R.H. Wentorf, J. Phys. Chem. 75, 1833 (1971).

    Google Scholar 

  32. S. Vagarali, M. Lee, R.C. DeVries, J. Hard Mater. 1, 233 (1990).

    Google Scholar 

  33. R. Burns, J. Hansen, R. Spits, M. Sibanda, C. Welbourn, D. Welch, Diam. Relat. Mater. 8, 1433 (1999).

    Google Scholar 

  34. H. Kanda, Braz. J. Phys. 30, 482 (2000).

    Google Scholar 

  35. A.T. Macrander, S. Krasnicki, Y. Zhong, J. Maj, Y.S. Chu, Appl. Phys. Lett. 87, 194113 (2005).

    Google Scholar 

  36. Y. Zhong, A.T. Macrander, S. Krasnicki, Y.S. Chu, J. Maj, L. Assoufid, J. Qian, J. Phys. D Appl. Phys. 40, 5301 (2007).

    Google Scholar 

  37. K.-J. Kim, Y. Shvyd’ko, S. Reiche, Phys. Rev. Lett. 100, 244802 (2008).

    Google Scholar 

  38. K.-J. Kim, Y.V. Shvyd’ko, Phys. Rev. Spec. Top. Accel. Beams 12, 030703 (2009).

    Google Scholar 

  39. M. Polikarpov, I. Snigireva, J. Morse, V. Yunkin, S. Kuznetsov, A. Snigirev, J. Synchrotron Radiat. 22, 23 (2015).

    Google Scholar 

  40. B. Nöhammer, J. Hoszowska, A.K. Freund, C. David, J. Synchrotron Radiat. 10, 168 (2003).

    Google Scholar 

  41. T. Kolodziej, P. Vodnala, S. Terentyev, V. Blank, Y. Shvyd’ko, J. Appl. Crystallogr. 49, 1240 (2016).

    Google Scholar 

  42. J. Als-Nielsen, A. Freund, G. Grübel, J. Linderholm, M. Nielsen, M. del Rio, J. Sellschop, Nucl. Instrum. Methods Phys. Res. B 94, 306 (1994).

    Google Scholar 

  43. M. Mattenet, T. Schneider, G. Grübel, J. Synchrotron Radiat. 5, 651 (1998).

    Google Scholar 

  44. P van Vaerenbergh, C. Detlefs, J. Härtwig, T. Lafford, F. Masiello, T. Roth, W. Schmid, P. Wattecamps, L. Zhang, R. Garrett, I. Gentle, K. Nugent, S. Wilkinset, AIP Conf. Proc. 1234, 229 (2010).

    Google Scholar 

  45. P. Fernandez, T. Graber, W.-K. Lee, D. Mills, C. Rogers, L. Assoufid, Nucl. Instrum. Methods Phys. Res. A 400, 476 (1997).

    Google Scholar 

  46. P. Fernandez, W. Lee, D. Mills, G. Tajiri, L. Assoufid, Nucl. Instrum. Methods Phys. Res. A 459, 347 (2001).

    Google Scholar 

  47. S. Goto, H. Yamazaki, Y. Shimizu, M. Suzuki, N. Kawamura, M. Mizumaki, M. Yabashi, K. Tamasaku, T. Ishikawa, Proc. SPIE 8502, 85020A (2012).

    Google Scholar 

  48. D. Zhu, Y. Feng, S. Stoupin, S.A. Terentyev, H.T. Lemke, D.M. Fritz, M. Chollet, J.M. Glownia, R. Alonso-Mori, M. Sikorski, S. Song, T.B. van Driel, G.J. Williams M. Messerschmidt, S. Boutet, V.D. Blank, Yu.V. Shvyd’ko, A. Robert, Rev. Sci. Instrum. 85, 063106 (2014).

    Google Scholar 

  49. S. Stoupin, S.A. Terentyev, V.D. Blank, Y.V. Shvyd’ko, K. Goetze, L. Assoufid, S.N. Polyakov, M.S. Kuznetsov, N.V. Kornilov, J. Katsoudas, R. Alonso-Mori, M. Chollet, Y. Feng, J.M. Glownia, H. Lemke, A. Robert, S. Song, M. Sikorski, D. Zhu, J. Appl. Crystallogr. 47, 1329 (2014).

    Google Scholar 

  50. Y. Feng, R. Alonso-Mori, T.R.M. Barends, V.D. Blank, S. Botha, M. Chollet, D.S. Damiani, R.B. Doak, J.M. Glownia, J.M. Koglin, H.T. Lemke, M. Messerschmidt, K. Nass, S. Nelson, I. Schlichting, R.L. Shoeman, Yu.V. Shvyd’ko, M. Sikorski, S. Song, S. Stoupin, S. Terentyev, G.J. Williams, D. Zhu, A. Robert, S. Boutet, J. Synchrotron Radiat. 22, 626 (2015).

    Google Scholar 

  51. W. Roseker, H. Franz, H. Schulte-Schrepping, A. Ehnes, O. Leupold, F. Zontone, S. Lee, A. Robert, G. Grübel, J. Synchrotron Radiat. 18, 481 (2011).

    Google Scholar 

  52. T. Osaka, M. Yabashi, Y. Sano, K. Tono, Y. Inubushi, T. Sato, S. Matsuyama, T. Ishikawa, K. Yamauchi, Opt. Express 21, 2823 (2013).

    Google Scholar 

  53. Y.P. Stetsko, Y.V. Shvyd’ko, G.B. Stephenson, Appl. Phys. Lett. 103, 173508 (2013).

    Google Scholar 

  54. T.S. Toellner, M. Hu, W. Sturhahn, G. Bortel, E.E. Alp, J. Zhao, J. Synchrotron Radiat. 8, 1082 (2001).

    Google Scholar 

  55. M. Yabashi, K. Tamasaku, S. Kikuta, T. Ishikawa, Rev. Sci. Instrum. 72, 4080 (2001).

    Google Scholar 

  56. Y. Shvyd’ko, S. Stoupin, K. Mundboth, J. Kim, Phys. Rev. A 87, 043835 (2013).

    Google Scholar 

  57. S. Stoupin, Y.V. Shvyd’ko, D. Shu, V.D. Blank, S.A. Terentyev, S.N. Polyakov, M.S. Kuznetsov, I. Lemesh, K. Mundboth, S.P. Collins, J.P. Sutter, M. Tolkiehn, Opt. Express 21, 30932 (2013).

    Google Scholar 

  58. G. Geloni, V. Kocharyan, E. Saldin, J. Mod. Opt. 58, 1391 (2011).

    Google Scholar 

  59. E.L. Saldin, E.A. Schneidmiller, Y.V. Shvyd’ko, M.V. Yurkov, Nucl. Instrum. Methods Phys. Res. A 475, 357 (2001).

    Google Scholar 

  60. J. Amann, W. Berg, V. Blank, F.-J. Decker, Y. Ding, P. Emma, Y. Feng, J. Frisch, D. Fritz, J. Hastings, Z. Huang, J. Krzywinski, R. Lindberg, H. Loos, A. Lutman, H.-D. Nuhn, D. Ratner, J. Rzepiela, D. Shu, Yu. Shvyd’ko, S. Spampinati, S. Stoupin, S. Terentyev, E. Trakhtenberg, D. Walz, J. Welch, J. Wu, A. Zholents, D. Zhu, Nat. Photonics 6, 693 (2012).

    Google Scholar 

  61. S. Stoupin, V. Blank, S. Terentyev, S. Polyakov, V. Denisov, M. Kuznetsov, Y. Shvyd’ko, D. Shu, P. Emma, J. Maj, I. McNulty, Diam. Relat. Mater. 33, 1 (2013).

    Google Scholar 

  62. A. Snigirev, V. Kohn, I. Snigireva, B. Lengeler, Nature 384, 49 (1996).

    Google Scholar 

  63. O.J.L. Fox, L. Alianelli, A.M. Malik, I. Pape, P.W. May, K.J.S. Sawhney, Opt. Express 22, 7657 (2014).

    Google Scholar 

  64. S. Terentyev, M. Polikarpov, I. Snigireva, M. Di Michiel, S. Zholudev, V. Yunkin, S. Kuznetsov, V. Blank, A. Snigirev, J. Synchrotron Radiat. 24, 103 (2017).

    Google Scholar 

  65. S. Antipov, S.V. Baryshev, J.E. Butler, O. Antipova, Z. Liu, S. Stoupin J. Synchrotron Radiat. 23, 163 (2016).

  66. C. Giles, C. Malgrange, J. Goulon, F. de Bergevin, C. Vettier, E. Dartyge, A. Fontaine, C. Giorgetti, S. Pizzini, J. Appl. Crystallogr. 27, 232 (1994).

    Google Scholar 

  67. M. Suzuki, Y. Inubushi, M. Yabashi, T. Ishikawa, J. Synchrotron Radiat. 21, 466 (2014).

    Google Scholar 

  68. J. Logan, R. Harder, L. Li, D. Haskel, P. Chen, R. Winarski, P. Fuesz, D. Schlagel, D. Vine, C. Benson, I. McNalty, J. Synchrotron Radiat. 23, 1210 (2016).

    Google Scholar 

  69. P. Karvinen, S. Rutishauser, A. Mozzanica, D. Greiffenberg, P. Juranic, A. Menzel, A. Lutman, J. Krzywinski, D. Fritz, H. Lemke, M. Cammarata, C. David, Opt. Lett. 37, 5073 (2012).

    Google Scholar 

  70. M. Makita, P. Karvinen, D. Zhu, P.N. Juranic, J. Grnert, S. Cartier, J.H. Jungmann-Smith, H.T. Lemke, A. Mozzanica, S. Nelson, L. Patthey, M. Sikorski, S. Song, Y. Feng, C. David, Optica 2, 912 (2015).

    Google Scholar 

  71. M. Degenhardt, G. Aprigliano, H. Schulte-Schrepping, U. Hahn, H.-J. Grabosch, E. Worner, J. Phys. Conf. Ser. 425, 192022 (2013).

    Google Scholar 

  72. M.R. Shepherd, AIP Conf. Proc. 1182, 816 (2009).

    Google Scholar 

  73. Y. Shvyd’ko, X-Ray Optics—High-Energy-Resolution Applications, Springer Series in Optical Sciences ( Springer, Berlin, 2004), vol. 98.

  74. X.R. Huang, D.P. Siddons, A.T. Macrander, R.W. Peng, X.S. Wu, Phys. Rev. Lett. 108, 224801 (2012).

    Google Scholar 

Download references

Acknowledgements

Work at the Advanced Photon Source was supported by the US Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357. Work at TISCNM was supported by the Ministry of Education and Science of the Russian Federation: Scientific Project RFMEF1586114X0001 Grant No. 14.586.21.0001.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuri Shvyd’ko.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shvyd’ko, Y., Blank, V. & Terentyev, S. Diamond x-ray optics: Transparent, resilient, high-resolution, and wavefront preserving. MRS Bulletin 42, 437–444 (2017). https://doi.org/10.1557/mrs.2017.119

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/mrs.2017.119

Navigation