Skip to main content
Log in

Materials for x-ray refractive lenses minimizing wavefront distortions

  • Next-Generation Materials for Synchrotron Radiation
  • Published:
MRS Bulletin Aims and scope Submit manuscript

Abstract

Refraction through curved surfaces, reflection from curved mirrors in grazing incidence, and diffraction from Fresnel zone plates are key hard x-ray focusing mechanisms. In this article, we present materials used for refractive x-ray lenses. Important properties of such x-ray lenses include focusing strength, shape, and the material’s homogeneity and absorption coefficient. Both the properties of the initial material and the fabrication process result in a lens with imperfections, which can lead to unwanted wavefront distortions. Different fabrication methods for one-dimensional and two-dimensional focusing lenses are presented, together with the respective benefits and inconveniences that are mostly due to shape fidelity. Different materials and material grades have been investigated in terms of their homogeneity and the absence of inclusions. Single-crystalline materials show high homogeneity, but suffer from unwanted diffracted radiation, which can be avoided using amorphous materials. Finally, we show that shape imperfections can be corrected using a correction lens.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

References

  1. G.E. Ice, J.D. Budai, J.W.L. Pang, Science 334, 1234 (2011).

    Google Scholar 

  2. T. Tomie, “X-ray Lens,” Japanese Patent 6045288 (1994).

  3. A. Snigirev, V. Kohn, I. Snigireva, B. Lengeler, Nature 384, 49 (1996).

    Google Scholar 

  4. F. Wilhelm, G. Garbarino, J. Jacobs, H. Vitoux, R. Steinmann, F. Guillou A. Snigirev, I. Snigireva, P. Voisin, D. Braithwaite, D. Aoki, J.-P. Brison, I. Kantor, I. Lyatun, A. Rogalev, High Press. Res. 36, 445 (2016).

    Google Scholar 

  5. D. Serebrennikov, E. Clementyev, A. Semenov, A. Snigirev, J. Synchrotron Radiat. 23, 1315 (2016).

    Google Scholar 

  6. G.B.M. Vaughan, J.P. Wright, A. Bytchkov, M. Rossat, H. Gleyzolle, I. Snigireva, A. Snigirev, J. Synchrotron Radiat. 18, 125 (2011).

    Google Scholar 

  7. V.V. Aristov, M.V. Grigoriev, S.M. Kuznetsov, L.G. Shabelnikov, V.A. Yunkin, M. Hoffmann, E. Voges, Opt. Commun. 177, 33 (2000).

    Google Scholar 

  8. C.G. Schroer, O. Kurapova, J. Patommel, P. Boye, J. Feldkamp, B. Lengeler, M. Burghammer, C. Riekel, L. Vincze, A. van der Hart, M. Küchler, Appl. Phys. Lett. 87, 124103 (2005).

    Google Scholar 

  9. C.G. Schroer, B. Lengeler, Phys. Rev. Lett. 94, 054802 (2005).

    Google Scholar 

  10. M. Sanchez del Rio, L. Alianelli, J. Synchrotron Radiat. 19, 366 (2012).

    Google Scholar 

  11. K. Evans-Lutterodt, J.M. Ablett, A. Stein, C.-C. Kao, D.M. Tennant, F. Klemens, A. Taylor, C. Jacobsen, P.L. Gammel, H. Huggins, S. Ustin, G. Bogart, L. Ocola, Opt. Express 11, 919 (2003).

    Google Scholar 

  12. L. Alianelli, K.J.S. Sawhney, R. Barrett, I. Pape, A. Malik, M.C. Wilson, Opt. Express 19, 11120 (2011).

    Google Scholar 

  13. F. Seiboth, A. Schropp, M. Scholz, F. Wittwer, C. Rödel, M. Wünsche, T. Ullsperger, S. Nolte, J. Rahomäki, K. Parfeniukas, S. Giakoumidis, U. Vogt, U. Wagner, C. Rau, U. Boesenberg, J. Garrevoet, G. Falkenberg, E.C. Galtier, H.J. Lee, B. Nagler, C.G. Schroer, Nat. Commun. 8, 14623 (2017).

    Google Scholar 

  14. S. Goto, M. Yabashi, K. Tamasaku, T. Ishikawa, AIP Conf. Proc. 879, 1057 (2007).

    Google Scholar 

  15. B. Lengeler, C. Schroer, J. Tümmler, B. Benner, M. Richwin, A. Snigirev I. Snigireva, M. Drakopoulos, J. Synchrotron Radiat. 6, 1153 (1999).

    Google Scholar 

  16. J. Tümmler, “Development of Compound Refractive Lenses for Hard X-rays,” PhD thesis, RWTH Aachen, Germany ( 2000).

  17. D.E. Dombrowski, Fusion Eng. Des. 37, 229 (1997).

    Google Scholar 

  18. T. Roth, L. Helfen, J. Hallmann, L. Samoylova, P. Kwaśniewski, B. Lengeler, A. Madsen, Proc. SPIE 9207, 920702 (2014).

    Google Scholar 

  19. I.I. Lyatun, A.Y. Goikhman, P.A. Ershov, I.I. Snigireva, A.A. Snigirev, J. Surf. Invest. X-ray Synchrotron Neutron Tech. 9, 446 (2015).

    Google Scholar 

  20. A. Andrejcuk, Y. Sakurai, M. Itou, AIP Conf. Proc. 879, 994 (2007).

    Google Scholar 

  21. V. Nazmov, E. Reznikova, A. Last, J. Mohr, V. Saile, R. Simon, M. DiMichiel, AIP Conf. Proc. 879, 770 (2007).

    Google Scholar 

  22. M.J. Walker, Proc. SPIE 4407, 89 (2001).

    Google Scholar 

  23. K. Evans-Lutterodt, A. Stein, J.M. Ablett, N. Bozovic, A. Taylor, D.M. Tennant, Phys. Rev. Lett. 99, 134801 (2007).

    Google Scholar 

  24. A.F. Isakovic, A. Stein, J.B. Warren, S. Narayanan, M. Sprung, A.R. Sandy, K. Evans-Lutterodt, J. Synchrotron Radiat. 16, 8 (2009).

    Google Scholar 

  25. O.J.L. Fox, L. Alianelli, A.M. Malik, I. Pape, P.W. May, K.J.S. Sawhney Opt. Express 22, 7657 (2014).

  26. F. Seiboth, M. Scholz, J. Patommel, R. Hoppe, F. Wittwer, J. Reinhardt, J. Seidel, M. Knaut, A. Jahn, K. Richter, J. Bartha, G. Falkenberg, C.G. Schroer Appl. Phys. Lett. 105, 131110 (2014).

  27. S. Terentyev, V. Blank, S. Polyakov, S. Zholudev, A. Snigirev, M. Polikarpov, T. Kolodziej, J. Qian, H. Zhou, Y. Shvyd’ko, Appl. Phys. Lett. 107, 111108 (2015).

    Google Scholar 

  28. S. Antipov, S.V. Baryshev, J.E. Butler, O. Antipova, Z. Liu, S. Stoupin J. Synchrotron Radiat. 23, 163 (2016).

  29. M. Polikarpov, I. Snigireva, A. Snigirev, AIP Conf. Proc. 1741, 040024 (2016).

    Google Scholar 

  30. S. Terentyev, M. Polikarpov, I. Snigireva, M. Di Michiel, S. Zholudev, V. Yunkin, S. Kuznetsov, V. Blank, A. Snigirev, J. Synchrotron Radiat. 24, 103 (2017).

    Google Scholar 

  31. M. Polikarpov, I. Snigireva, J. Morse, V. Yunkin, S. Kuznetsov, A. Snigirev, J. Synchrotron Radiat. 22, 23 (2015).

    Google Scholar 

  32. T.V. Kononenko, V.G. Ralchenko, E.E. Ashkinazi, M. Polikarpov, P. Ershov, S. Kuznetsov, V. Yunkin, I. Snigireva, V.I. Konov, Appl. Phys. A 122, 152 (2016).

    Google Scholar 

  33. F. Seiboth, M. Kahnt, M. Scholz, M. Seyrich, F. Wittwer, J. Garrevoet, G. Falkenberg, A. Schropp, C.G. Schroer, Proc. SPIE 9963, 99630P (2016).

    Google Scholar 

  34. M. Vaezi, H. Seitz, S. Yang, Int. J. Adv. Manuf. Technol. 67, 1721 (2013).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Roth.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Roth, T., Alianelli, L., Lengeler, D. et al. Materials for x-ray refractive lenses minimizing wavefront distortions. MRS Bulletin 42, 430–436 (2017). https://doi.org/10.1557/mrs.2017.117

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/mrs.2017.117

Navigation