Skip to main content
Log in

Scintillator materials for x-ray detectors and beam monitors

  • Next-Generation Materials for Synchrotron Radiation
  • Published:
MRS Bulletin Aims and scope Submit manuscript

Abstract

Indirect detection is a versatile way to detect hard x-rays. It is based on an x-ray-to-light converter, optical coupling, and a visible light detector. The converter screen, known as a scintillator, is deployed in both imaging and point detection, using either signal integration or counting. Two applications are explored in this review—sample examination and x-ray beam diagnostics for synchrotron sources. A large variety of scintillators are available to fulfill the needs of synchrotron applications. High dynamic range, small pixel size, and radiation hardness are the major advantages of scintillators. This article provides a review of the technical and scientific aspects of scintillators used in synchrotron radiation (i.e., storage rings and x-ray free-electron lasers). The advantages and drawbacks of implementation of the most popular scintillators on synchrotron beamlines are described.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

References

  1. R. Tucoulou, G. Martinez-Criado, P. Bleuet, I. Kieffer, P. Cloetens, S. Labouré, T. Martin, C. Guilloud, J. Sussini, J. Synchrotron Radiat. 15, 392 (2008).

    Google Scholar 

  2. T. Martin, G. Baret, F. Lesimple, P.P. Jobert, IEEE Trans. Nucl. Sci. 55, 1527 (2008).

    Google Scholar 

  3. S. Shionoya, W.M. Yen, Phosphor Handbook (CRC Press, New York, 1998).

  4. M. Gambacini, A. Taibi, A. Del Guerra, A. Marziani, A. Tuffanelli, Phys. Med. Biol. 41, 2799 (1996).

    Google Scholar 

  5. P. Lecoq, A. Getkin, M. Korzhik, Inorganic Scintillators for Detector Systems, Physical Principles and Crystal Engineering, 2nd ed., (Springer, Switzerland, 2017).

  6. S.C. Thacker, K. Yang, N. Packard, V. Gaysinskiy, G. Burkett, S. Miller, J.M. Boone, V.V. Nagarkar, Proc. SPIE 7258, 725846 (2009).

    Google Scholar 

  7. G. Gennaro, M. Malvestio, G. Zanella, R. Zannoni, Nucl. Instrum. Methods Phys. Res. A 382, 567 (1996).

    Google Scholar 

  8. A. Sahlholm, O. Svenonius, C. Näsgarde, P. Wiklund, J. Linnros, Proc. 19th ESA Symp. ESA SP-671 ( 2009 ).

  9. A. Koch, C. Raven, P. Spanne, A. Snigirev, J. Opt. Soc. Am. A 15, 1940 (1998).

    Google Scholar 

  10. A. Koch, P. Cloetens, W. Ludwig, J.C. Labiche, B. Ferrand, “Reading Thin-Film Scintillators with Optical Microscopes for X-Ray Imaging,” Proc. SCINT99 Conf. (Moscow, 1999).

  11. T. Martin, M. Couchaud, B. Ferrand, A. Caillet, D. Pelenc, B. Chambaz, A. Passero, Proc. SCINT2005 Conf., A. Getkin, B. Grinyov, Eds. (ISMA, Kharkov, Ukraine, 2006), pp. 459–463.

  12. J.W. Jung, J.S. Lee, N. Kwon, S.J. Park, S. Chang, J. Kim, J. Pyo, Y. Kohmura, Y. Nishino, M. Yamamoto, T. Ishikawa, J.H. Je, Rev. Sci. Instrum. 83, 093704 (2012).

    Google Scholar 

  13. C.L. Melcher, L.A. Eriksson, M. Aykac, F. Bauer, C. Williams, M. Loope, M. Schmand, in Radiation Detectors for Medical Applications, S. Tavernier, A. Gektin, B. Grinyov, W.W. Moses, Eds. (Springer, Dordrecht, The Netherlands, 2006), pp. 243–257.

  14. T. Martin, P.A. Douissard, Z. Seeley, N. Cherepy, S. Payne, E. Mathieu, J. Schulanden, IEEE Trans. Nucl. Sci. 59, 2269 (2012).

    Google Scholar 

  15. P.A. Douissard, A. Cecilia, T. Martin, V. Chevalier, M. Couchaud, T. Baumbach, K. Dupré, M. Kühbacher, A. Rack, J. Synchrotron Radiat. 17, 571 (2010).

    Google Scholar 

  16. C. Soeun, K. Namseop, K. Jinkyung, K. Yoshiki, I. Tetsuya, R.C. Kook, J.J. Ho, T. Akira, Sci. Rep., published online March 4, 2015, http://dx.doi.org/10.1038/srep08760.

  17. N.J. Cherepy, J.D. Kuntz, J.J. Roberts, T.A. Hurst, O.B. Drury, R.D. Sanner, T.M. Tillotson, S.A. Payne, Proc. SPIE 7079, 70790X (2008).

    Google Scholar 

  18. Konoshima Chemical Co. Ltd., http://www.konoshima.co.jp/eng/ceramics.

  19. T. Kameshima, T. Sato, T. Kudo, S. Ono, K. Ozaki, T. Katayama, T. Hatsui, M. Yabashi, AIP Conf. Proc. 1741, 040033 (2016).

    Google Scholar 

  20. M. Bordessoule, J. Phys. Conf. Ser. 425, 192018 (2013).

    Google Scholar 

  21. A. Pereira, T. Martin, M. Levinta, C. Dujardin, J. Mater. Chem. C 3, 4954 (2015).

    Google Scholar 

  22. M. Degenhardt, G. Aprigliano, H. Schulte-Schrepping, U. Hahn, H.J. Grabosh, E. Wörner, J. Phys. Conf. Ser. 425, 192022 (2013).

    Google Scholar 

  23. Y. Hosono, H. Nihei, M. Nakazama, Jpn. J. Appl. Phys. 43 (6A), 3582 (2004).

    Google Scholar 

  24. A. Koch, W. Freund, J. Grünert, M. Planas, T. Roth, L. Samoylova, V. Lyamayev, Proc. SPIE 9512, S.G. Biedron, Ed. (SPIE, Prague, 2015).

  25. S.P. Hau-Riege, R.A. London, R.M. Bionta, M.A. McKernan, S.L. Baker, J. Krzywinski, R. Sobierajski, R. Nietubyc, J.B. Pelka, M. Jurek, L. Juha, J. Chalupský, J. Cihelka, V. Hájková, A. Velyhan, J. Krása, J. Kuba, K. Tiedtke, S. Toleikis, Th. Tschentscher, H. Wabnitz, M. Bergh, C. Caleman, K. Sokolowski-Tinten, N. Stojanovic, U. Zastrau, Appl. Phys. Lett. 90, 173128 (2007).

    Google Scholar 

  26. C. Manfredotti, E. Vittone, A. Lo Giudice, C. Paolini, F. Fizzotti, G. Dinca, V. Ralchenko, S.V. Nistor, Diam. Relat. Mater. 10, 568 (2001).

    Google Scholar 

  27. K. Iakoubovskii, G.J. Adriaenssens, Phys. Status Solidi A 172, 123 (1999).

    Google Scholar 

  28. L. Museur, A. Kanaev, J. Mater. Sci. 44, 2560 (2009).

    Google Scholar 

  29. L. Museur, A. Kanaev, J. Appl. Phys. 103, 103520 (2008).

    Google Scholar 

  30. C.W.E. van Eijk, Phys. Med. Biol. 47, 85 (2002).

    Google Scholar 

  31. R. Hofstadter, Phys. Rev. 75, 796 (1949).

    Google Scholar 

  32. M.J. Weber, J. Lumin. 100, 35 (2002).

    Google Scholar 

  33. M. Nikl, A. Yoshikawa, Adv. Opt. Mater. 3, 463 (2015).

    Google Scholar 

  34. W. Bachmann, C. Ronda, A. Meijerink, Chem. Mater. 21, 2077 (2009).

    Google Scholar 

  35. M. Moszynski, T. Ludziejewski, D. Wolski, W. Klamra, L.O. Norlin, Nucl. Instrum. Methods Phys. Res. A 345, 461 (1994).

    Google Scholar 

  36. M. Nikl, A. Yoshikawa, K. Kamada, K. Nejezchleb, C.R. Stanek, J.A. Mares, K. Blazek, Prog. Cryst. Growth Charact. Mater. 59, 47 (2013).

    Google Scholar 

  37. M. Nikl, K. Kamada, V. Babin, J. Pejchal, K. Pilarova, E. Mihokova, A. Beitlerova, K. Bartosiewicz, S. Kurosawa, A. Yoshikawa, Cryst. Growth Des. 14, 4827 (2014).

    Google Scholar 

  38. M.T. Lucchini, V. Babin, P. Bohacek, S. Gundacker, K. Kamada, M. Nikl, A. Petrosyan, A. Yoshikawa, E. Auffray, Nucl. Instrum. Methods Phys. Res. A 816, 176 (2016).

    Google Scholar 

  39. S. Blahuta, A. Bessière, B. Viana, V. Ouspenski, IEEE Trans. Nucl. Sci. 60 (4), 3134 (2013).

    Google Scholar 

  40. K. Kamada, Y. Shoji, V.V. Kochurikhin, S. Okumura, S. Yamamoto, A. Nagura, J.Y. Yeom, S. Kurosawa, Y. Yokota, Y. Ohashi, M. Nikl, A. Yoshikawa, J. Cryst. Growth 452, 81 (2016).

    Google Scholar 

  41. P. Prusa, M. Kucera, J.A. Mares, Z. Onderisinova, M. Hanus, V. Babin, A. Beitlerova, M. Nikl, Cryst. Growth Des. 15, 3715 (2015).

    Google Scholar 

  42. Y. Zorenko, V. Gorbenko, T. Zorenko, O. Sidletskiy, A. Fedorov, P. Bilski, A. Twardak, Phys. Status Solidi Rapid Res. Lett. 9, 489 (2015).

    Google Scholar 

  43. P. Průša, M. Kučera, V. Babin, P. Brůža, D. Pánek, A. Beitlerová, J.A. Mareš, M. Hanuš, Z. Lučeničová, M. Nikl, Adv. Opt. Mater. 5, 1600875 (2017).

    Google Scholar 

  44. M.J. Weber, J. Appl. Phys. 44, 3205 (1973).

    Google Scholar 

  45. E.G. Gumanskaya, M.V. Korzhik, S.A. Smirnova, V.B. Pavlenko, A.A. Fedorov, Opt. Spektrosk. 72, 155 (1992).

    Google Scholar 

  46. T. Takeda, T. Miyata, F. Muramatsu, T. Tomiki, J. Electrochem. Soc. 127, 438 (1980).

    Google Scholar 

  47. E. Autrata, P. Schauer, J. Kvapil, J. Kvapil, Scanning 5, 91 (1983).

    Google Scholar 

  48. M. Nikl, Phys. Status Solidi A 178, 595 (2000).

    Google Scholar 

  49. J. Trummer, E. Auffray, P. Lecoq, A. Petrosyan, P. Sempere-Roldan, Nucl. Instrum. Methods Phys. Res. A 551, 339 (2005).

    Google Scholar 

  50. F. Riva, P.A. Douissard, T. Martin, F. Carlà, Y. Zorenko, C. Dujardin, CrystEng-Comm 18, 608 (2016).

    Google Scholar 

  51. K.W. Kramer, P. Dorenbos, H.U. Gudel, C.W.E. van Eijk, J. Mater. Chem. 16, 2773 (2006).

    Google Scholar 

  52. M.E. Rutherford, D.J. Chapman, T.G. White, M. Drakopoulos, A. Rack, D.E. Eakins, J. Synchrotron Radiat. 23, 685 (2016).

    Google Scholar 

  53. Z. Marton, S.R. Miller, E. Ovechkina, P. Kenesei, M.D. Moore, R. Woods, J.D. Almer, A. Miceli, B. Singh, V.V. Nagarkar, AIP Conf. Proc. 1741, 040035 (2016).

    Google Scholar 

  54. Z. Marton, V.V. Nagarkar, S.R. Miller, C. Brecher, H.B. Bhandari, P. Kenesei, S.K. Ross, J.D. Almer, B. Singh, J. Phys. Conf. Ser. 493, 012017 (2014).

    Google Scholar 

  55. F. Riva, T. Martin, P.A. Douissard, C. Dujardin, J. Instrum. 11, C10010 (2016).

    Google Scholar 

  56. A. Hospodková, M. Nikl, O. Pacherová, J. Oswald, P. Bruža, D. Pánek, B. Foltynski, E. Hulicius, A. Beitlerová, M. Heuken, Nanotechnology 25, 455501 (2014).

    Google Scholar 

  57. R. Engels, G. Kemmerling, J. Schelten, IEEE Nucl. Sci. Symp. Conf. Rec. 5 (2005), p. 1318.

  58. P. Lecoq, Nucl. Instrum. Methods Phys. Res. A 809, 130 (2016).

    Google Scholar 

  59. M. Globus, B. Grinyov, J.K. Kim, Inorganic Scintillators for Modern and Traditional Applications ( Institute for Single Crystals, Kharkov, Ukraine, 2005).

  60. G.F. Knoll, Radiation Detection and Measurement (Wiley, New York, 1999).

  61. P.A. Rodnyi, E.I. Gorohova, S.B. Mikhrin, A.N. Mishin, A.S. Potapov, Nucl. Instrum. Methods Phys. Res. A 486, 244 (2002).

    Google Scholar 

Download references

Acknowledgment

Partial support of the Czech Science Foundation, Project No. 16-15569S, is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Martin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Martin, T., Koch, A. & Nikl, M. Scintillator materials for x-ray detectors and beam monitors. MRS Bulletin 42, 451–457 (2017). https://doi.org/10.1557/mrs.2017.116

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/mrs.2017.116

Navigation