Skip to main content

Advertisement

Log in

High-energy x-ray scattering studies of battery materials

  • Synchrotron Radiation Research in Materials Science
  • Published:
MRS Bulletin Aims and scope Submit manuscript

Abstract

High-energy x-ray (HEX) scattering is a sensitive and powerful tool to nondestructively probe the atomic and mesoscale structures of battery materials under synthesis and operational conditions. The penetration power of HEXs enables the use of large, practical samples and realistic environments, allowing researchers to explore the inner workings of batteries in both laboratory and commercial formats. This article highlights the capability and versatility of HEX techniques, particularly from synchrotron sources, to elucidate materials synthesis processes and thermal instability mechanisms in situ, to understand (discharging mechanisms in operando under a variety of cycling conditions, and to spatially resolve electrode/electrolyte responses to highlight connections between inhomogeneity and performance. Such studies have increased our understanding of the fundamental mechanisms underlying battery performance. By deepening our understanding of the linkages between microstructure and overall performance, HEXs represent a powerful tool for validating existing batteries and shortening battery-development timelines.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. K.-D. Liss, A. Bartels, A. Schreyer, H. Clemens, Textures Microstruct. 35, 219 (2003).

    Google Scholar 

  2. M. Merlini, M. Hanfland, High Press. Res. 33, 511 (2013).

  3. K.F. Kelton, G.W. Lee, A.K. Gangopadhyay, R.W. Hyers, T.J. Rathz, J.R. Rogers, M.B. Robinson, D.S. Robinson, Phys. Rev. Lett. 90, 195504 (2003).

  4. S.D. Shastri, J. Almer, C. Ribbing, B. Cederstrom, J. Synchrotron Radiat. 14 204 (2007).

  5. P. Cloetens, W. Ludwig, J. Baruchel, D. Van Dyck, J. Van Landuyt, J.P. Guigay, M. Schlenker, Appl. Phys. Lett. 75, 2912 (1999).

  6. H. Jensen, M. Bremholm, R.P. Nielsen, K.D. Joensen, J.S. Pedersen, H. Birkedal Y.-S. Chen, J. Almer, E.G. Søgaard, S.B. Iversen, B.B. Iversen, Angew. Chem. Int. Ed. 119, 1131 (2007).

  7. Z.H. Chen, Y. Ren, Y. Qin, H.M. Wu, S.Q. Ma, J.G. Ren, X.M. He, Y.K. Sun K. Amine, J. Mater. Chem. 21, 5604 (2011).

  8. Y. Li, R. Xu, Y. Ren, J. Lu, H. Wu, L. Wang, D.J. Miller, Y.-K. Sun, K. Amine, Z. Chen, Nano Energy 19, 522 (2016).

  9. G.L. Xu, Y. Qin, Y. Ren, L. Cai, K. An, K. Amine, Z.H. Chen, J. Mater. Chem. A 3, 13031 (2015).

  10. Q. Liu, Z.-F. Li, Y. Liu, H. Zhang, Y. Ren, C.-J. Sun, W. Lu, Y. Zhou, L. Stanciu E.A. Stach, J. Xie, Nat. Commun. 6, 6127 (2015).

  11. Y.-K. Sun, Z. Chen, H.-J. Noh, D.-J. Lee, H.-G. Jung, Y. Ren, S. Wang, C.S. Yoon, S.-T. Myung, K.Amine, Nat. Mater. 11, 942 (2012).

  12. Z. Chen, Y. Ren, E. Lee, C. Johnson, Y. Qin, K. Amine, Adv. Energy Mater. 3, 729 (2013).

  13. Z. Chen, Y. Ren, A.N. Jansen, C.-K. Lin, W. Weng, K. Amine, Nat. Commun. 4, 1513 (2013).

  14. X.Q. Yang, X. Sun, J. McBreen, Electrochem. Commun. 2, 733 (2000).

  15. W.-S. Yoon, K.-W. Nam, D. Jang, K.Y. Chung, Y.-H. Cho, S. Choi, J.C. Hanson X.-Q. Yang, Electrochem. Commun. 15, 74 (2012).

  16. Q. Liu, H. He, Z.-F. Li, Y. Liu, Y. Ren, W. Lu, J. Lu, E.A. Stach, J. Xie, ACS Appl. Mater. Interfaces 6, 3282 (2014).

  17. H. Liu, F.C. Strobridge, O.J. Borkiewicz, K.M. Wiaderek, K.W. Chapman P.J. Chupas, C.P. Grey, Science 344, 1252817 (2014).

  18. M.P.B. Glazer, J. Cho, J. Almer, J. Okasinski, P.V. Braun, D.C. Dunand, Adv. Energy Mater. 5, 1500466 (2015).

  19. F. Wang, L. Wu, B. Key X.-Q. Yang, C.P. Grey, Y. Zhu, J. Graetz, Adv. Energy Mater. 3, 1324 (2013).

  20. J.-L. Shui, J.S. Okasinski, C. Chen, J.D. Almer, D.-J. Liu, ChemSusChem 7, 543 (2014).

  21. J.-L. Shui, J.S. Okasinski, P. Kenesei, H.A. Dobbs, D. Zhao, J.D. Almer, D.-J. Liu, Nat. Commun. 4, 2255 (2013).

  22. K. Kirshenbaum, D.C. Bock, C.-Y. Lee, Z. Zhong, K.J. Takeuchi, A.C. Marschilok, E.S. Takeuchi, Science 347, 149 (2015).

  23. W.A. Paxton, Z. Zhong, T. Tsakalakos, J. Power Sources 275, 429 (2015).

  24. J. Rijssenbeek, Y. Gao, Z. Zhong, M. Croft, N. Jisrawi, A. Ignatov, T. Tsakalakos, J. Power Sources 196, 2332 (2011).

  25. H. Leemreize, J.D. Almer, S.R. Stock, H. Birkedal, J.R. Soc. Interface 10, 20130319 (2013).

  26. H.F. Poulsen, S.F. Nielsen, E.M. Lauridsen, S. Schmidt, R.M. Suter, U. Lienert, L. Margulies, T. Lorentzen, D.J. Jensen, J. Appl. Crystallogr. 34, 751 (2001).

  27. A. Ulvestad, H.M. Cho, R. Harder, J.W. Kim, S.H. Dietze, E. Fohtung, Y.S. Meng, O.G. Shpyrko, Appl. Phys. Lett. 104 (7), 073108 (2014).

  28. M. Borland, J. Phys. Conf. Ser. 425, 042016 (2013), http://dx.doi.org/10.1088/1742-6596/425/4/042016.

  29. E.S. Reich, Nature 501, 148 (2013).

    Google Scholar 

Download references

Acknowledgments

This work was supported by the US Department of Energy, under Contract DE-AC02–06CH11357, with main support provided by the Department of Energy (DOE) Office of Basic Energy Sciences. The authors thank D. Abraham for useful discussions and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthew P. B. Glazer.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Glazer, M.P.B., Okasinski, J.S., Almer, J.D. et al. High-energy x-ray scattering studies of battery materials. MRS Bulletin 41, 460–465 (2016). https://doi.org/10.1557/mrs.2016.96

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/mrs.2016.96

Navigation