Skip to main content
Log in

Shape change in crystallization of biological macromolecules

  • Nucleation in Atomic, Molecular, and Colloidal Systems
  • Published:
MRS Bulletin Aims and scope Submit manuscript

Abstract

Conformational changes, and the formation of densely packed ordered aggregates or crystals, are behaviors that profoundly affect the properties of a molecule. Using the example of biological macromolecules, we discuss two types of interactions between these two behaviors. First, we demonstrate that shape change may be driven by crystallization if the gain in crystallization free energy is sufficient to overcome the transition to an unfavorable molecular conformation. Hence, the crystal structures of flexible molecules may be a poor representation of their free-phase atomic arrangements. Second, molecules with conformational variability, such as proteins, may facilitate the nucleation of their crystals by forming dense liquid clusters enriched in domain-swapped or misassembled oligomers. In the clusters, the nucleation barrier is reduced due to the lower surface free energy of the crystal/dense liquid interface, and nucleation is significantly faster.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. J. Trotter, Acta Crystallogr. 14, 1135 (1961).

    Article  CAS  Google Scholar 

  2. A. Almenningen, O. Bastiansen, L. Fernholt, B.N. Cyvin, S.J. Cyvin, S. Samdal, J. Mol. Struct. 128, 59 (1985).

    Article  CAS  Google Scholar 

  3. N.E. Chayen, J.R. Helliwell, E.H. Snell, “Macromolecular Crystallization and Crystal Perfection,” IUCr Monographs on Crystallography, 24 ( Oxford University Press, Oxford, New York, 2010).

  4. T. Bergfors, Ed., Protein Crystallization, 2nd ed. ( International University Line, La Jolla, CA, 2009).

  5. J.D. Ng, Y.G. Kuznetsov, A.J. Malkin, G. Keith, R. Giege, A. McPherson, Nucleic Acids Res. 25, 2582 (1997).

  6. A. McPherson, Crystallization of Biological Macromolecules (Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York, 1999 ).

  7. A.J. Malkin, R.E. Thorne, Methods 34, 273 (2004).

  8. P. Vekilov, “Nucleation and Growth Mechanisms of Protein Crystals,” in Handbook of Crystal Growth, T. Nishinaga, Ed. (Elsevier, Amsterdam, 2015), vol. 1, p. 795.

  9. D.L. Nelson, M.M. Cox, Lehninger’s Principles of Biochemistry, 3rd ed. (W.H. Freeman, New York, 2000).

  10. A. Ducruix, R. Giege, Eds., Crystallization of Nucleic Acids and Proteins: A Practical Approach (IRL Press, Oxford, 1992).

  11. Y. Devedjiev, Acta Crystallogr. F Struct. Biol. Cryst. Commun. 71, 157 (2015).

  12. K. Wütrich, Acta Crystallogr. D Biol. Crystallogr. 51, 249 (1995).

  13. A.A. Yee, A. Savchenko, A. Ignachenko, J. Lukin, X. Xu, T. Skarina, E. Evdokimova, C.S. Liu, A. Semesi, V. Guido, A.M. Edwards, C.H. Arrowsmith, J. Am. Chem. Soc. 127, 16512 (2005).

  14. C.R.R. Grace, M.H. Perrin, J. Gulyas, M.R. DiGruccio, J.P. Cantle, J.E. Rivier, W.W. Vale, R. Riek, Proc. Natl. Acad. Sci. U.S.A. 104, 4858 (2007).

  15. H.M. Berman, J. Westbrook, Z. Feng, G. Gilliland, T.N. Bhat, H. Weissig I.N. Shindyalov, P.E. Bourne, Nucleic Acids Res. 28, 235 (2000).

  16. C.K. Fisher, C.M. Stultz, Curr. Opin. Struct. Biol. 21, 426 (2011).

  17. S.O. Garbuzynskiy, B.S. Melnik, M.Y. Lobanov, A.V. Finkelstein, O.V. Galzitskaya, Proteins Struct. Funct. Bioinform. 60, 139 (2005).

  18. C. Bissantz, P. Bernard, M. Hibert, D. Rognan, Proteins Struct. Funct. Bioinform. 50, 5 (2003).

  19. M. Kontoyianni, L.M. McClellan, G.S. Sokol, J. Med. Chem. 47, 558 (2004).

  20. K.L. Meagher, H.A. Carlson, J. Am. Chem. Soc. 126, 13276 (2004).

  21. N.M.F.S.A. Cerqueira, N.F. Bras, P.A. Fernandes, M.J. Ramos, Proteins Struct. Funct. Bioinform. 74, 192 (2009).

  22. M.P. Schlunegger, M.J. Bennett, D. Eisenberg, Adv. Protein Chem. 50, 61 (1997).

  23. M.J. Bennett, M.P. Schlunegger, D. Eisenberg, Protein Sci. 4, 2455 (1995).

  24. I. Zegers, J. Deswarte, L. Wyns, Proc. Natl. Acad. Sci. U.S.A. 96, 818 (1999).

  25. Y. Liu, P.J. Hart, M.P. Schlunegger, D. Eisenberg, Proc. Natl. Acad. Sci. U.S.A. 95, 3437 (1998).

  26. S. Hirota, Y. Hattori, S. Nagao, M. Taketa, H. Komori, H. Kamikubo, Z. Wang, I. Takahashi, S. Negi, Y. Sugiura, M. Kataoka, Y. Higuchi, Proc. Natl. Acad. Sci. U.S.A. 107, 12854 (2010).

  27. A. McPherson, Introduction to Macromolecular Crystallography (Wiley, Hoboken, NJ, 2009).

  28. A.A. Chernov, H. Komatsu, “Principles of Crystal Growth in Protein Crystallization,” in Science and Technology of Crystal Growth, J.P. van der Eerden, O.S.L. Bruinsma, Eds. (Kluwer Academic, Dordrecht, The Netherlands, 1995), p. 329.

  29. P.G. Vekilov, Cryst. Growth Des. 7, 2796 (2007).

  30. D.N. Petsev, K. Chen, O. Gliko, P.G. Vekilov, Proc. Natl. Acad. Sci. U.S.A. 100, 792 (2003).

  31. S.-T. Yau, B.R. Thomas, P.G. Vekilov, Phys. Rev. Lett. 85, 353 (2000).

  32. S.-T. Yau, D.N. Petsev, B.R. Thomas, P.G. Vekilov, J. Mol. Biol. 303, 667 (2000).

  33. Z. Derewenda, Structure 12, 529 (2004).

  34. Z.S. Derewenda, Acta Crystallogr. D Biol. Crystallogr. 66, 604 (2010).

  35. Z.S. Derewenda, P.G. Vekilov, Acta Crystallogr. D Biol. Crystallogr. 62, 116 (2006).

  36. A.J. Malkin, Y.G. Kuznetsov, W. Glanz, A. McPherson, J. Phys. Chem. 100, 11736 (1996).

  37. I. Reviakine, D.K. Georgiou, P.G. Vekilov, J. Am. Chem. Soc. 125, 11684 (2003).

  38. S.-T. Yau, P.G. Vekilov, Nature 406, 494 (2000).

  39. J.W. Gibbs, Trans. Connect. Acad. Sci. 3, 108 (1876).

  40. J.W. Gibbs, Trans. Connect. Acad. Sci. 3, 343 (1878).

  41. O. Galkin, P.G. Vekilov, Proc. Natl. Acad. Sci. U.S.A. 97, 6277 (2000).

  42. P.G. Vekilov, Cryst. Growth Des. 4, 671 (2004).

  43. W. Pan, A.B. Kolomeisky, P.G. Vekilov, J. Chem. Phys. 122, 174905 (2005).

  44. P.G. Vekilov, Cryst. Growth Des. 10, 5007 (2010).

  45. A.J. Malkin, A. McPherson, J. Cryst. Growth 128, 1232 (1993).

  46. A.J. Malkin, A. McPherson, Acta Crystallogr. D Biol. Crystallogr. 50, 385 (1994).

  47. P.G. Vekilov, Nat. Nanotechnol. 6, 82 (2011).

  48. S.-T. Yau, P.G. Vekilov, J. Am. Chem. Soc. 123, 1080 (2001).

  49. O. Galkin, P.G. Vekilov, J. Am. Chem. Soc. 122, 156 (2000).

  50. J.W. Gibbs, The Scientific Papers of J. Willard Gibbs, Vol. One: Thermodynamics (Oxbow Press, Woodbridge, CT, 1993).

  51. Y. Li, V. Lubchenko, M.A. Vorontsova, L. Filobelo, P.G. Vekilov, J. Phys. Chem. B 116, 10657 (2012).

  52. O. Gliko, W. Pan, P. Katsonis, N. Neumaier, O. Galkin, S. Weinkauf, P.G. Vekilov J. Phys. Chem. B 111, 3106 (2007).

  53. M. Sleutel, A.E. Van Driessche, Proc. Natl. Acad. Sci. U.S.A. 111, E546 (2014).

  54. D. Maes, M.A. Vorontsova, M.A.C. Potenza, T. Sanvito, M. Sleutel, M. Giglio, P.G. Vekilov, Acta Crystallogr. F Struct. Biol. Cryst. Commun. 71, 815 (2015).

  55. O. Gliko, N. Neumaier, W. Pan, I. Haase, M. Fischer, A. Bacher, S. Weinkauf, P.G. Vekilov, J. Am. Chem. Soc. 127, 3433 (2005).

  56. W. Pan, O. Galkin, L. Filobelo, R.L. Nagel, P.G. Vekilov, Biophys. J. 92, 267 (2007).

  57. W. Pan, P.G. Vekilov, V. Lubchenko, J. Phys. Chem. B 114, 7620 (2010).

  58. M.J. Bennett, M.R. Sawaya, D. Eisenberg, Structure 14, 811 (2006).

  59. W. Royer Jr., “Structures of Red Blood Cell Hemoglobins,” in Blood and Tissue Oxygen Carriers, Ch.P. Mangum, Ed. (Springer, Berlin, 1992), p. 87.

  60. S.H. Bhosale, M.B. Rao, V.V. Deshpande, Microbiol. Rev. 60, 280 (1996).

  61. P. Srivastava, S. Shukla, S.K. Choubey, V.S. Gomase, J. Enzyme Res. 1, 1 (2010).

  62. M.A. Vorontsova, D. Maes, P.G. Vekilov, Faraday Discuss. 179, 27 (2015).

  63. P.G. Vekilov, M.A. Vorontsova, Acta Crystallogr. F Struct. Biol. Cryst. Commun. 70, 271 (2014).

  64. S.V. Albers, B.H. Meyer, Nat. Rev. Microbiol. 9, 414 (2011).

  65. U.B. Sleytr, P. Messner, D. Pum, M. Sara, Angew. Chem. Int. Ed. 38, 1035 (1999).

  66. M. Stewart, T.J. Beveridge, T.J. Trust, J. Bacteriol. 166, 120 (1986).

  67. S. Chung, S.H. Shin, C.R. Bertozzi, J.J. De Yoreo, Proc. Natl. Acad. Sci. U.S.A. 107, 16536 (2010).

  68. S.H. Shin, S. Chung, B. Sanii, L.R. Comolli, C.R. Bertozzi, J.J. De Yoreo, Proc. Natl. Acad. Sci. U.S.A. 109, 12968 (2012).

  69. S.-H. Kim, D.H. Shin, J. Liu, V. Oganesyan, S. Chen, Q.S. Xu, J.-S. Kim, D. Das, U. Schulze-Gahmen, S.R. Holbrook, E.L. Holbrook, B.A. Martinez, N. Oganesyan, A. DeGiovanni, Y. Lou, M. Henriquez, C. Huang, J. Jancarik, R. Pufan, N.-G. Choi, J.-M. Chandonia, J. Hou, B. Gold, H. Yokota, S.E. Brenner P.D. Adams, R. Kim, J. Struct. Funct. Genomics 6, 63 (2005).

  70. A.N. Naganathan, V. Munoz, J. Am. Chem. Soc. 127, 480 (2005).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

P.G.V. and K.N.O. were supported by NASA (Grants NNX14AD68G and NNX14AE79G) and NSF (Grant MCB-1244568). S.W.C. gratefully acknowledges support by the Basic Science Research Program through the National Research Foundation of Korea (NRF), funded by the Ministry of Education, Korea (NRF-2015R1D1A1A01059580) and Pusan National University Research Grant, 2014.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter G. Vekilov.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vekilov, P.G., Chung, S. & Olafson, K.N. Shape change in crystallization of biological macromolecules. MRS Bulletin 41, 375–380 (2016). https://doi.org/10.1557/mrs.2016.87

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/mrs.2016.87

Navigation