Skip to main content
Log in

Synthesis and microstructure of electrodeposited and sputtered nanotwinned face-centered-cubic metals

  • Twinning in Metallic Materials
  • Published:
MRS Bulletin Aims and scope Submit manuscript

Abstract

The remarkable properties of nanotwinned (NT) face-centered-cubic (fcc) metals arise directly from twin boundaries, the structures of which can be initially determined by growth twinning during the deposition process. Understanding the synthesis process and its relation to the resulting microstructure, and ultimately to material properties, is key to understanding and utilizing these materials. This article presents recent studies on electrodeposition and sputtering methods that produce a high density of nanoscale growth twins in fcc metals. Nanoscale growth twins tend to form spontaneously in monolithic and alloyed fcc metals with lower stacking-fault energies, while engineered approaches are necessary for fcc metals with higher stacking-fault energies. Growth defects and other microstructural features that influence nanotwin behavior and stability are introduced here, and future challenges in fabricating NT materials are highlighted.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2

Similar content being viewed by others

References

  1. L. Lu, X. Chen, X. Huang, K. Lu, Science 323, 607 (2009).

    Article  CAS  Google Scholar 

  2. L. Lu, Y.F. Shen, X.H. Chen, L.H. Qian, K. Lu, Science 304, 422 (2004).

  3. Y.F. Shen, L. Lu, Q.H. Lu, Z.H. Jin, K. Lu, Scr. Mater. 52, 989 (2005).

  4. K. Lu, L. Lu, S. Suresh, Science 324, 349 (2009).

  5. L. Lu, Z.S. You, K. Lu, Scr. Mater. 66, 837 (2012).

  6. X.H. Chen, L. Lu, K. Lu, J. Appl. Phys. 102, 083708 (2007).

  7. K.C. Chen, W.W. Wu, C.N. Liao, L.J. Chen, K.N. Tu, Science 321, 1066 (2008).

  8. G.Z. Meng, Y.W. Shao, T. Zhang, Y. Zhang, F.H. Wang, Electrochim. Acta 53, 5923 (2008).

  9. M.A. Meyers, A. Mishra, D.J. Benson, Prog. Mater. Sci. 51, 427 (2006).

  10. T.C. Liu, C.M. Liu, Y.S. Huang, C. Chen, K.N. Tu, Scr. Mater. 68, 241 (2013).

  11. J.W. Christian, S. Mahajan, Prog. Mater. Sci. 39, 1 (1995).

  12. Y.T. Zhu, X.Z. Liao, X.L. Wu, Prog. Mater. Sci. 57, 1 (2012).

  13. J.P. Hirth, J. Lothe, Theory of Dislocations (Krieger Publishing, Malabar, FL, 1982).

  14. Z.S. You, L. Lu, K. Lu, Acta Mater. 59, 6927 (2011).

  15. B.Y.C. Wu, P.J. Ferreira, C.A. Schuh, Metall. Mater. Trans. A 36A, 1927 (2005).

  16. M.S. Chandrasekar, M. Pushpavanam, Electrochim. Acta 53, 3313 (2008).

  17. S. Jin, Q.S. Pan, L. Lu, Acta Metall. Sin. 49, 635 (2013).

  18. N. Vasiljevic, M. Wood, P.J. Heard, W. Schwarzacher, J. Electrochem. Soc. 157, D193 (2010).

  19. T.C. Chan, Y.L. Chueh, C.N. Liao, Cryst. Growth Des. 11, 4970 (2011).

  20. C.C. Koch, R.O. Scattergood, M. Saber, H. Kotan, J. Mater. Res. 28, 1785 (2013).

  21. M. Ohring, Materials Science of Thin Films, 2nd ed. (Academic Press, San Diego, 2001).

  22. A.M. Hodge, Y.M. Wang, T.W. Barbee, Mater. Sci. Eng. A 429, 272 (2006).

  23. X. Zhang, H. Wang, X.H. Chen, L. Lu, K. Lu, R.G. Hoagland, A. Misra, Appl. Phys. Lett. 88, 173116 (2006).

  24. D. Bufford, H. Wang, X. Zhang, Acta Mater. 59, 93 (2011).

  25. T.A. Furnish, A.M. Hodge, APL Mater. 2, 046112 (2014).

  26. R.T. Ott, J. Geng, M.F. Besser, M.J. Kramer, Y.M. Wang, E.S. Park, R. LeSar, A.H. King, Acta Mater. 96, 378 (2015).

  27. X. Zhang, A. Misra, H. Wang, A.L. Lima, M.F. Hundley, R.G. Hoagland, J. Appl. Phys. 97, 094302 (2005).

  28. X. Zhang, A. Misra, H. Wang, T.D. Shen, M. Nastasi, T.E. Mitchell, J.P. Hirth, R.G. Hoagland, J.D. Embury, Acta Mater. 52, 995 (2004).

  29. L. Velasco, M.N. Polyakov, A.M. Hodge, Scr. Mater. 83, 33 (2014).

  30. A.M. Hodge, Y.M. Wang, T.W. Barbee, Scr. Mater. 59, 163 (2008).

  31. X. Zhang, A. Misra, H. Wang, J.G. Swadener, A.L. Lima, M.F. Hundley, R.G. Hoagland, Appl. Phys. Lett. 87, 233116 (2005).

  32. D. Bufford, Y. Liu, Y. Zhu, Z. Bi, Q.X. Jia, H. Wang, X. Zhang, Mater. Res. Lett. 1, 51 (2013).

  33. O. Anderoglu, A. Misra, H. Wang, F. Ronning, M.F. Hundley, X. Zhang, Appl. Phys. Lett. 93, 083108 (2008).

  34. X. Zhang, O. Anderoglu, A. Misra, H. Wang, Appl. Phys. Lett. 90, 153101 (2007).

  35. S.D. Dahlgren, W.L. Nicholson, M.D. Merz, W. Bollmann, J.F. Devlin, D.R. Wang, Thin Solid Films 40, 345 (1977).

  36. L.B. Freund, S. Suresh, Thin Film Materials: Stress, Defect Formation and Surface Evolution (Cambridge University Press, New York, 2009).

  37. X. Zhang, O. Anderoglu, R.G. Hoagland, A. Misra, JOM 60, 75 (2008).

  38. H. Ma, Y. Zou, A.S. Sologubenko, R. Spolenak, Acta Mater. 98, 17 (2015).

  39. H. Idrissi, B.J. Wang, M.S. Colla, J.P. Raskin, D. Schryvers, T. Pardoen, Adv. Mater. 23, 2119 (2011).

  40. B. Wang, H. Idrissi, H. Shi, M.S. Colla, S. Michotte, J.P. Raskin, T. Pardoen, D. Schryvers, Scr. Mater. 66, 866 (2012).

  41. J.A. Thornton, Annu. Rev. Mater. Sci. 7, 239 (1977).

  42. Y. Liu, D. Bufford, H. Wang, C. Sun, X. Zhang, Acta Mater. 59, 1924 (2011).

  43. Y. Liu, D. Bufford, S. Rios, H. Wang, J. Chen, J.Y. Zhang, X. Zhang, J. Appl. Phys. 111, 073526 (2012).

  44. K.Y. Yu, D. Bufford, Y. Chen, Y. Liu, H. Wang, X. Zhang, Appl. Phys. Lett. 103, 181903 (2013).

  45. W. Wegscheider, K. Eberl, G. Abstreiter, H. Cerva, H. Oppolzer, Appl. Phys. Lett. 57, 1496 (1990).

  46. M. Dynna, A. Marty, B. Gilles, G. Patrat, Acta Mater. 45, 257 (1997).

  47. Y.S. Zhang, L.L. Liu, T.Y. Zhang, J. Appl. Phys. 101, 063502 (2007).

  48. Y. Liu, Y. Chen, K.Y. Yu, H. Wang, J. Chen, X. Zhang, Int. J. Plast. 49, 152 (2013).

  49. E. Rauch, M. Veron, J. Portillo, D. Bultreys, Y. Maniette, S. Nicolopoulos, Microsc. Anal. 128, S5 (2008).

  50. J. Wang, O. Anderoglu, J.P. Hirth, A. Misra, X. Zhang, Appl. Phys. Lett. 95, 021908 (2009).

  51. L. Xu, D. Xu, K.N. Tu, Y. Cai, N. Wang, P. Dixit, J.H.L. Pang, J.M. Miao, J. Appl. Phys. 104, 113717 (2008).

  52. Y.M. Wang, F. Sansoz, T. LaGrange, R.T. Ott, J. Marian, T.W. Barbee, A.V. Hamza, Nat. Mater. 12, 697 (2013).

  53. J. Wang, N. Li, O. Anderoglu, X. Zhang, A. Misra, J.Y. Huang, J.P. Hirth, Acta Mater. 58, 2262 (2010).

  54. T. LaGrange, B.W. Reed, M. Wall, J. Mason, T. Barbee, M. Kumar, Appl. Phys. Lett. 102, 011905 (2013).

  55. D. Bufford, H.Y. Wang, X.H. Zhang, J. Mater. Res. 28, 1729 (2013).

  56. Y. Chen, K.Y. Yu, Y. Liu, S. Shao, H. Wang, M.A. Kirk, J. Wang, X. Zhang, Nat. Commun. 6, 7036 (2015).

  57. C.J. Shute, B.D. Myers, S. Xie, S.Y. Li, T.W. Barbee, A.M. Hodge, J.R. Weertman, Acta Mater. 59, 4569 (2011).

  58. B.G. Yoo, S.T. Boles, Y. Liu, X. Zhang, R. Schwaiger, C. Eberl, O. Kraft, Acta Mater. 81, 184 (2014).

  59. N. Li, J. Wang, X. Zhang, A. Misra, JOM 63, 62 (2011).

  60. D. Bufford, Y. Liu, J. Wang, H. Wang, X. Zhang, Nat. Commun. 5, 4864 (2014).

  61. O. Anderoglu, A. Misra, H. Wang, X. Zhang, J. Appl. Phys. 103, 094322 (2008).

  62. Y. Zhang, J. Wang, H. Shan, K. Zhao, Scr. Mater. 108, 35 (2015).

  63. C. Saldana, T.G. Murthy, M.R. Shankar, E.A. Stach, S. Chandrasekar, Appl. Phys. Lett. 94, 021910 (2009).

  64. Y.F. Zhao, T.A. Furnish, M.E. Kassner, A.M. Hodge, J. Mater. Res. 27, 3049 (2012).

  65. J.C. Ye, Y.M. Wang, T.W. Barbee, A.V. Hamza, Appl. Phys. Lett. 100, 261912 (2012).

  66. Z.S. You, X.Y. Li, L.J. Gui, Q.H. Lu, T. Zhu, H.J. Gao, L. Lu, Acta Mater. 61, 217 (2013).

  67. D.C. Jang, X.Y. Li, H.J. Gao, J.R. Greer, Nat. Nanotechnol. 7, 594 (2012).

  68. W.W. Jian, G.M. Cheng, W.Z. Xu, H. Yuan, M.H. Tsai, Q.D. Wang, C.C. Koch, Y.T. Zhu, S.N. Mathaudhu, Mater. Res. Lett. 1, 61 (2013).

  69. Q. Huang, D.L. Yu, B. Xu, W.T. Hu, Y.M. Ma, Y.B. Wang, Z.S. Zhao, B. Wen, J.L. He, Z.Y. Liu, Y.J. Tian, Nature 510, 250 (2014).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank N. Lu (Institute of Metals Research) and T. LaGrange (Lawrence Livermore National Laboratory) for image contributions, and B.L Boyce, T.A. Furnish, K.M. Hattar, and B.R. Muntifering (Sandia National Laboratories) for helpful discussions. D.C.B. was fully supported by the Division of Materials Science and Engineering, Office of Basic Energy Sciences, US Department of Energy. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the US Department of Energy’s National Nuclear Security Administration under Contract No. DE-AC04–94AL85000. The work on NT Al was supported by DoE-OBES under Grant No. DE-SC0010482. The work (Y.M.W.) at Lawrence Livermore National Laboratory was supported by the US Department of Energy under Contract DE-AC52–07NA27344. Y.L. was fully supported by the Office of Basic Energy Sciences, Project FWP 06SCPE401, under US DoE Contract No. W-7405-ENG-36. L.L. acknowledges financial support from the National Basic Research Program of China (973 Program, 2012CB932202), the NSFC (Grant Nos. 51420105001, 51371171, and 51471172) and the “Hundreds of Talents Project” from CAS.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel C. Bufford.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bufford, D.C., Wang, Y.M., Liu, Y. et al. Synthesis and microstructure of electrodeposited and sputtered nanotwinned face-centered-cubic metals. MRS Bulletin 41, 286–291 (2016). https://doi.org/10.1557/mrs.2016.62

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/mrs.2016.62

Navigation