Skip to main content
Log in

Topological engineering of glasses using temperature-dependent constraints

  • Material Functionalities from Molecular Rigidity
  • Published:
MRS Bulletin Aims and scope Submit manuscript

Abstract

The properties and functionalities of inorganic glasses can be tuned by adjusting their chemical composition and, in turn, their atomic-scale structure. However, accurate prediction of glass properties from composition has traditionally been impossible. Recent progress in temperature-dependent constraint theory paves the way for the design of new multicomponent glasses with tailored properties. Atoms in network glasses are constrained by their chemical bonds and bond angles, and the strength of these constraints depends on the local topology and the chemical nature of the elements. By counting the number of constraints around both network-forming and network-modifying atoms as a function of both composition and temperature, it is possible to make quantitative connections among composition, structure, and certain macroscopic properties. Here, we review recent developments in glass-structure determination and modeling. We then demonstrate how the structural information is used as input for topological predictions of glass properties such as viscosity and hardness. These predictions enable the design of novel industrial glasses with desired properties and manufacturing attributes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

References

  1. G.N. Greaves, S. Sen, Adv. Phys. 56, 1 (2007).

    Google Scholar 

  2. J.C. Phillips, J. Non Cryst. Solids 34, 153 (1979).

    Google Scholar 

  3. J.C. Phillips, M.F. Thorpe, Solid State Commun. 53, 699 (1985).

    Google Scholar 

  4. P.K. Gupta, J.C. Mauro, J. Chem. Phys. 130, 094503 (2009).

    Google Scholar 

  5. J.C. Mauro, P.K. Gupta, R.J. Loucks, J. Chem. Phys. 130, 234503 (2009).

    Google Scholar 

  6. M.M. Smedskjaer, J.C. Mauro, Y.Z. Yue, Phys. Rev. Lett. 105, 115503 (2010).

    Google Scholar 

  7. M.M. Smedskjaer, M. Bauchy, Appl. Phys. Lett. 107, 141901 (2015).

    Google Scholar 

  8. I. Pignatelli, A. Kumar, M. Bauchy, G. Sant, Langmuir 32, 4434 (2016).

    Google Scholar 

  9. W.H. Zachariasen, J. Am. Chem. Soc. 54, 3841 (1932).

    Google Scholar 

  10. A.H. Silver, P.J. Bray, J. Chem. Phys. 29, 984 (1958).

    Google Scholar 

  11. S. Ispas, T. Charpentier, F. Mauri, D.R. Neuville, Solid State Sci. 12, 183 (2010).

    Google Scholar 

  12. M.M. Smedskjaer, Front. Mater. 1, 23 (2014).

    Google Scholar 

  13. M.M. Smedskjaer, J.C. Mauro, R.E. Youngman, C.L. Hogue, M. Potuzak, Y.Z. Yue, J. Phys. Chem. B 115, 12930 (2011).

    Google Scholar 

  14. M. Bauchy, M. Micoulaut, J. Non Cryst. Solids 357, 2530 (2011).

    Google Scholar 

  15. K.H. Sun, J. Am. Ceram. Soc. 30, 277 (1947).

    Google Scholar 

  16. C. Hermansen, J.C. Mauro, Y.Z. Yue, J. Chem. Phys. 140, 154501 (2014).

    Google Scholar 

  17. C. Hermansen, B. Rodrigues, L. Wondraczek, Y.Z. Yue, J. Chem. Phys. 141, 244502 (2014).

    Google Scholar 

  18. J.C. Mauro, Y.Z. Yue, A.J. Ellison, P.K. Gupta, D.C. Allan, Proc. Natl. Acad. Sci. U.S.A. 106, 19780 (2009).

    Google Scholar 

  19. Q.J. Zheng, J.C. Mauro, A.J. Ellison, M. Potuzak, Y.Z. Yue, Phys. Rev. B Condens. Matter 83, 212202 (2011).

    Google Scholar 

  20. Y.Z. Yue, J. Non Cryst. Solids 355, 737 (2009).

    Google Scholar 

  21. G. Adam, J.H. Gibbs, J. Chem. Phys. 43, 139 (1965)

  22. G.G. Naumis, Phys. Rev. E 71, 026114 (2005).

    Google Scholar 

  23. M.M. Smedskjaer, J.C. Mauro, S. Sen, Y.Z. Yue, Chem. Mater. 22, 5358 (2010).

    Google Scholar 

  24. Q. Jiang, H. Zeng, Z. Liu, J. Ren, G. Chen, Z. Wang, L. Sun, D. Zhao, J. Chem. Phys. 139, 124502 (2013).

    Google Scholar 

  25. C. Hermansen, R.E. Youngman, J. Wang, Y.Z. Yue, J. Chem. Phys. 142, 184503 (2015).

    Google Scholar 

  26. H. Zeng, Q. Jiang, Z. Liu, X. Li, J. Ren, G. Chen, F. Liu, S. Peng, J. Phys. Chem. B 118, 5177 (2014).

    Google Scholar 

  27. C. Hermansen, X.J. Guo, R.E. Youngman, J.C. Mauro, M.M. Smedskjaer, Y.Z. Yue, J. Chem. Phys. 143, 064510 (2015).

    Google Scholar 

  28. M. Yamane, J.D. Mackenzie, J. Non Cryst. Solids 15, 153 (1974).

  29. J.C. Mauro, A. Tandia, K.D. Vargheese, Y.Z. Mauro, M.M. Smedskjaer, Chem. Mater. 28, 4267 (2016).

    Google Scholar 

Download references

Acknowledgments

We thank J.C. Mauro and Y.Z. Yue for the collaboration on temperature-dependent constraints over the years. M.M.S. acknowledges support of the Danish Council for Independent Research (Sapere Aude Starting Grant), Lundbeck Foundation, and VILLUM Fonden.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Morten M. Smedskjaer.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Smedskjaer, M.M., Hermansen, C. & Youngman, R.E. Topological engineering of glasses using temperature-dependent constraints. MRS Bulletin 42, 29–33 (2017). https://doi.org/10.1557/mrs.2016.299

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/mrs.2016.299

Navigation