Skip to main content
Log in

Nanoengineering of concrete via topological constraint theory

  • Material Functionalities from Molecular Rigidity
  • Published:
MRS Bulletin Aims and scope Submit manuscript

Abstract

Topological constraint theory is a convenient theoretical framework to predict structure–property relationships in glasses and identify optimal compositions featuring targeted macroscopic properties. Although introduced for chalcogenide glasses, molecular rigidity concepts have since been applied with great success to new families of materials, such as silicate glasses, phase-change materials, and proteins. Here, we review recent developments in the extension of rigidity theory to concrete, which is by far the most heavily manufactured material in the world. By capturing the important atomic topology while filtering out less relevant structural details of calcium–silicate–hydrate, the binding phase of concrete, topological constraint theory was used to nanoengineer concrete from the atomic scale by predicting the compositional dependence of hardness, toughness, and creep. As such, rigidity concepts represent a promising tool to accelerate the discovery of new materials with tailored properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2.
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. F.-J. Ulm, Arab. J. Sci. Eng. 37, 481 (2012).

    Google Scholar 

  2. B.J. Van Ruijven, D.P. Van Vuuren, W. Boskaljon, M.L. Neelis, D. Saygin, M.K. Patel, Resour. Conserv. Recy. 112, 15 (2016).

    Google Scholar 

  3. M. Pour-Ghaz, Int. J. Appl. Ceram. Technol. 10, 584 (2013).

    Google Scholar 

  4. H.F.W. Taylor, Cement Chemistry (Thomas Telford, London, 1997).

  5. P. Wray, Am. Ceram. Soc. Bull. 91, 47 (2012).

    Google Scholar 

  6. F. Sanchez, K. Sobolev, Constr. Build. Mater. 24, 2060 (2010).

    Google Scholar 

  7. J.C. Mauro, A.J. Ellison, L.D. Pye, Int. J. Appl. Glass Sci. 4, 64 (2013).

    Google Scholar 

  8. J.C. Mauro, A. Tandia, K.D. Vargheese, Y.Z. Mauro, M.M. Smedskjaer, Chem. Mater. 28, 4267 (2016).

    Google Scholar 

  9. H.M. Jennings, Mater. Struct. 37, 59 (2004).

    Google Scholar 

  10. K. Ioannidou, K.J. Krakowiak, M. Bauchy, C.G. Hoover, E. Masoero, S. Yip, F.J. Ulm, P. Levitz, R.J.-M. Pellenq, E. Del Gado, Proc. Natl. Acad. Sci. U.S.A. 113, 2029 (2016).

    Google Scholar 

  11. K.L. Scrivener, P. Juilland, P.J.M. Monteiro, Cem. Concr. Res. A 78, 38 (2015).

    Google Scholar 

  12. R.J.-M. Pellenq, A. Kushima, R. Shahsavari, K.J. Van Vliet, M.J. Buehler, S. Yip, F.J. Ulm, Proc. Natl. Acad. Sci. U.S.A. 106, 16102 (2009).

    Google Scholar 

  13. M.J. Abdolhosseini Qomi, K.J. Krakowiak, M. Bauchy, K.L. Stewart, R. Shahsavari, D. Jagannathan, D.B. Brommer, A. Baronnet, M.J. Buehler, S. Yip, F.-J. Ulm, K.J. Van Vliet, R.J.-.M. Pellenq, Nat. Commun. 5, 4960 (2014).

    Google Scholar 

  14. M.J. Abdolhosseini Qomi, M. Bauchy, F.-J. Ulm, R.J.-M. Pellenq, J. Chem. Phys. 140, 054515 (2014).

    Google Scholar 

  15. M. Bauchy, H. Laubie, M.A. Qomi, C.G. Hoover, C.G., F.J. Ulm, R.J.-M. Pellenq, J. Non Cryst. Solids 419, 58 (2015).

    Google Scholar 

  16. M.J. Abdolhosseini Qomi, F.-J. Ulm, R.J.-M. Pellenq, Phys. Rev. Appl. 3, 064010 (2015).

    Google Scholar 

  17. M. Bauchy, M. Wang, Y. Yu, B. Wang, N.M. Anoop Krishnan, F.-J. Ulm, R. Pellenq, Condens. Matter (2016), https://arxiv.org/abs/1605.05043.

  18. M.J. Abdolhosseini Qomi, M. Bauchy, R.J.-M. Pellenq, F.-J. Ulm, “Applying Tools from Glass Science to Study Calcium-Silicate-Hydrates,” Mechanics and Physics of Creep, Shrinkage, and Durability of Concrete: A Tribute to Zdenek P. Bazant: Proc. Ninth Int. Conf. Creep, Shrinkage Durability Mech. (CONCREEP-9), (ASCE Publications, Washington, DC, 2013), pp. 78–85.

  19. M. Bauchy, M.J. Abdolhosseini Qomi, F.-J. Ulm, R.J.-M. Pellenq, J. Chem. Phys. 140, 214503 (2014).

    Google Scholar 

  20. M. Bauchy, M.J. Abdolhosseini Qomi, C. Bichara, F.-J. Ulm, R.J.-M. Pellenq, J. Phys. Chem. C 118, 12485 (2014).

    Google Scholar 

  21. M. Bauchy, M.J. Abdolhosseini Qomi, R.J.M. Pellenq, F.J. Ulm, in Computational Modelling of Concrete Structures (CRC Press, Boca Raton, FL, 2014), p. 169.

  22. M. Bauchy, M.J.A. Qomi, C. Bichara, F.-J. Ulm, R.J.-M. Pellenq, Phys. Rev. Lett. 114, 125502 (2015).

    Google Scholar 

  23. M.J.A. Qomi, M. Bauchy, F.-J. Ulm, R. Pellenq, in Nanotechnology in Construction, K. Sobolev, S.P. Shah, Eds. (Springer, New York, 2015), p. 99.

  24. S. Hamid, Z. Kristallogr. 154, 189 (1981).

    Google Scholar 

  25. L.B. Skinner, S.R. Chae, C.J. Benmore, H.R. Wenk, P.J.M. Monteiro, Phys. Rev. Lett. 104, 195502 (2010).

    Google Scholar 

  26. C. Meral, C.J. Benmore, P.J.M. Monteiro, Cem. Concr. Res. 41, 696 (2011).

    Google Scholar 

  27. S. Soyer-Uzun, S.R. Chae, C.J. Benmore, H.-R. Wenk, P.J.M. Monteiro, J. Am. Ceram. Soc. 95, 793 (2012).

    Google Scholar 

  28. J.C. Mauro, Front. Mater. 1, 20 (2014).

    Google Scholar 

  29. J.C. Mauro, Am. Ceram. Soc. Bull. 90, 31 (2011).

    Google Scholar 

  30. M. Bauchy, Am. Ceram. Soc. Bull. 91, 34 (2012).

    Google Scholar 

  31. M. Bauchy, M. Micoulaut, M. Celino, S. Le Roux, M. Boero, C. Massobrio, Phys. Rev. B Condens. Matter 84, 054201 (2011).

    Google Scholar 

  32. M. Bauchy, M. Micoulaut, J. Non Cryst. Solids 357, 2530 (2011).

    Google Scholar 

  33. M. Bauchy, M. Micoulaut, J. Non Cryst. Solids 377, 34 (2013).

    Google Scholar 

  34. M. Bauchy, M. Micoulaut, Europhys. Lett. 104, 56002 (2013).

    Google Scholar 

  35. M. Bauchy, M. Micoulaut, Nat. Commun. 6, 6398 (2015).

    Google Scholar 

  36. M. Bauchy, M. Micoulaut, Phys. Rev. Lett. 110, 095501 (2013).

    Google Scholar 

  37. M. Bauchy, M. Micoulaut, M. Boero, C. Massobrio, Phys. Rev. Lett. 110, 165501 (2013).

    Google Scholar 

  38. M. Bauchy, A. Kachmar, M. Micoulaut, J. Chem. Phys. 141, 194506 (2014).

    Google Scholar 

  39. M. Micoulaut, M. Bauchy, H. Flores-Ruiz, in Molecular Dynamics Simulations of Disordered Materials, C. Massobrio, J. Du, M. Bernasconi, P.S. Salmon, Eds. (Springer, New York, 2015), p. 275.

  40. M. Micoulaut, M. Bauchy, Phys. Status Solidi B 250, 976 (2013).

    Google Scholar 

  41. M. Micoulaut, A. Kachmar, M. Bauchy, S. Le Roux, C. Massobrio, M. Boero, Phys. Rev. B Condens. Matter 88, 054203 (2013).

    Google Scholar 

  42. M. Bauchy, J. Non Cryst. Solids 377, 39 (2013).

    Google Scholar 

  43. M.M. Smedskjaer, M. Bauchy, J.C. Mauro, S.J. Rzoska, M. Bockowski, J. Chem. Phys. 143, 164505 (2015).

    Google Scholar 

  44. M.M. Smedskjaer, J.C. Mauro, Y. Yue, Phys. Rev. Lett. 105, 115503 (2010).

    Google Scholar 

  45. W.C. Oliver, G.M. Pharr, J. Mater. Res. 7, 1564 (1992).

    Google Scholar 

  46. D.Swiler, A.K. Varshneya, R. Callahan, J. Non Cryst. Solids 125, 250 (1990)

  47. B. Wang, Y. Yu, Y.J. Lee, M. Bauchy, Front. Mater. 2, 11 (2015).

    Google Scholar 

  48. B. Wang, Y. Yu, M. Wang, J.C. Mauro, M. Bauchy, Phys. Rev. B Condens. Matter 93, 064202 (2016).

  49. M.M. Smedskjaer, M. Bauchy, Appl. Phys. Lett. 107, 141901 (2015).

    Google Scholar 

  50. Y. Yu, B. Wang, Y.J. Lee, M. Bauchy, Mater. Res. Soc. Symp. Proc. 1757, pp. mrsf14–1757 (Materials Research Society, Warendale, PA, 2015).

  51. M. Bauchy, B. Wang, M. Wang, Y. Yu, M.J.A. Qomi, M. Smedskjaer, C. Bichara, F.-J. Ulm, R. Pellenq, Acta Mater. 121, 234 (2016).

    Google Scholar 

  52. P. Boolchand, D.G. Georgiev, B. Goodman, J. Optoelectron. Adv. Mater. 3, 703 (2001).

    Google Scholar 

  53. B. Mantisi, M. Bauchy, M. Micoulaut, Phys. Rev. B Condens. Matter 92, 134201 (2015).

    Google Scholar 

  54. J.-P. Guin, T. Rouxel, J.-C. Sanglebœuf, I. Melscoët, J. Lucas, J. Am. Ceram. Soc. 85, 1545 (2002).

    Google Scholar 

  55. M. Bauchy, J. Chem. Phys. 137, 044510 (2012).

    Google Scholar 

  56. Z.P Bažant, M.H. Hubler, Q. Yu, Concrete International 33, 44 (2011).

  57. M. Bauchy, E. Masoero, F.-J. Ulm, R. Pellenq, CONCREEP 10, pp. 511–516 (American Society of Civil Engineers, Reston, VA, 2015).

  58. E. Masoero, M. Bauchy, E. Del Gado, H. Manzano, R.M. Pellenq, F.-J. Ulm. S. Yip, CONCREEP 10, pp. 555–564 ( American Society of Civil Engineers, Reston, VA, 2015).

  59. I. Pignatelli, A. Kumar, R. Alizadeh, Y. Le Pape, Yann, M. Bauchy, G. Sant, J. Chem. Phys. 145, 054701 (2016).

    Google Scholar 

  60. P. Chen, P. Boolchand, D.G. Georgiev, J. Phys. Condens. Matter 22, 065104 (2010).

  61. M. Bauchy, M. Micoulaut, Phys. Rev. B Condens. Matter 83, 184118 (2011).

    Google Scholar 

  62. M. Bauchy, B. Guillot, M. Micoulaut, N. Sator, Chem. Geol. 346, 47 (2013).

    Google Scholar 

  63. I. Pignatelli, A. Kumar, M. Bauchy, G. Sant, Langmuir 32, 4434 (2016).

    Google Scholar 

  64. I. Pignatelli, A. Kumar, K.G. Field, B. Wang, Y. Yu, Y. Le Pape, M. Bauchy, G. Sant, Sci. Rep. 6, 20155 (2016).

    Google Scholar 

  65. B. Wang, Y. Yu, I. Pignatelli, G. Sant, M. Bauchy, J. Chem. Phys. 143, 024505 (2015).

    Google Scholar 

  66. Y. Yu, M. Wang, D. Zhang, B. Wang, G. Sant, M. Bauchy, Phys. Rev. Lett. 115, 165901 (2015).

    Google Scholar 

  67. M. Wang, B. Wang, T.K. Bechgaard, J.C. Mauro, S.J. Rzoska, M. Bockowski, M.M. Smedskjaer, M. Bauchy, J. Non Cryst. Solids 454, 46 (2016).

    Google Scholar 

  68. M. Wang, M. Bauchy, Condens. Matter Mater. Sci. ( 2015 ), available at http://arxiv.org/abs/1505.07880.

  69. M. Wang, B. Wang, N.M.A. Krishnan, Y. Yu, M.M. Smedskjaer, J.C. Mauro, G. Sant, M. Bauchy, J. Non Cryst. Solids (forthcoming).

Download references

Acknowledgments

This review is based upon work supported by the National Science Foundation under Grant No. 1562066. The author gratefully acknowledges M.J.A. Qomi, C. Bichara, F.-J. Ulm, and R.J.-M. Pellenq, who have largely contributed to the study presented herein.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mathieu Bauchy.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bauchy, M. Nanoengineering of concrete via topological constraint theory. MRS Bulletin 42, 50–54 (2017). https://doi.org/10.1557/mrs.2016.295

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/mrs.2016.295

Navigation