Skip to main content

Advertisement

Log in

Emerging operando and x-ray pair distribution function methods for energy materials development

  • Technical Feature
  • Published:
MRS Bulletin Aims and scope Submit manuscript

Abstract

Our energy needs drive widespread materials research. Advances in materials characterization are critical to this research effort. Using new characterization tools that allow us to probe the atomic structure of energy materials in situ as they operate, we can identify how their structure is linked to their functional properties and performance. These fundamental insights serve as a roadmap to enhance performance in the next generation of advanced materials. In the last decade, developments in synchrotron instrumentation have made the pair distribution function (PDF) method and operando x-ray studies more readily accessible tools capable of providing valuable insights into complex materials systems. Here, the emergence of the PDF method as a versatile structure characterization tool and the further enhancement of this method through developments in operando capabilities and multivariate data analytics are described. These advances in materials characterization are demonstrated by several highlighted studies focused on energy storage in batteries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. H. Liu, F.C. Strobridge, O.J. Borkiewicz, K.M. Wiaderek, K.W. Chapman, P.J. Chupas, C.P. Grey, Science 344 (6191) (2014), doi: 10.1126/science.1252817.

  2. X. Zhang, M. van Hulzen, D.P. Singh, A. Brownrigg, J.P. Wright, N.H. van Dijk, M. Wagemaker, Nano Lett. 14 (5), 2279 (2014).

    Article  CAS  Google Scholar 

  3. T. Egami, S.J.L. Billinge, Underneath the Bragg Peaks Structural Analysis of Complex Materials (Pergamon, Oxford, 2012).

    Google Scholar 

  4. P.J. Chupas, X. Qiu, J.C. Hanson, P.L. Lee, C.P. Grey, S.J.L. Billinge, J. Appl. Crystallogr. 36, 1342 (2003).

    Article  CAS  Google Scholar 

  5. K.W. Chapman, P.J. Chupas, in In-Situ Characterization of Heterogeneous Catalysts, J.A. Rodriguez, J.C. Hanson, P.J. Chupas, Eds. (Wiley, Hoboken, NJ, 2013), pp. 147–168.

    Chapter  Google Scholar 

  6. J. Bréger, N. Dupré, P.J. Chupas, P.L. Lee, T. Proffen, J.B. Parise, C.P. Grey, J. Am. Chem. Soc. 127 (20) 7529 (2005).

    Article  Google Scholar 

  7. A. Ulvestad, A. Singer, H.-M. Cho, J.N. Clark, R. Harder, J. Maser, Y.S. Meng, O.G. Shpyrko, Nano Lett. 14 (9), 5123 (2014).

    Article  CAS  Google Scholar 

  8. F.C. Strobridge, B. Orvananos, M. Croft, H.-C. Yu, R. Robert, H. Liu, Z. Zhong, T. Connolley, M. Drakopoulos, K. Thornton, C.P. Grey, Chem. Mater. 27 (7), 2374 (2015).

    Article  CAS  Google Scholar 

  9. K.M. Wiaderek, O.J. Borkiewicz, E. Castillo-Martinez, R. Robert, N. Pereira, G.G. Amatucci, C.P. Grey, P.J. Chupas, K.W. Chapman, J. Am. Chem. Soc. 135 (10), 4070 (2013).

    Article  CAS  Google Scholar 

  10. F.C. Strobridge, R.J. Clement, M. Leskes, D.S. Middlemiss, O.J. Borkiewicz, K.M. Wiaderek, K.W. Chapman, P.J. Chupas, C.P. Grey, Chem. Mater. 26 (21), 6193 (2014).

    Article  CAS  Google Scholar 

  11. K.M. Wiaderek, O.J. Borkiewicz, N. Pereira, J. Ilavsky, G.G. Amatucci, P.J. Chupas, K.W. Chapman, J. Am. Chem. Soc. 136 (17), 6211 (2014).

    Article  CAS  Google Scholar 

  12. T.E. Ashton, D.H. Borras, A. Iadecola, K.M. Wiaderek, P.J. Chupas, K.W. Chapman, S.A. Corr, Acta Crystallogr. B Struct. Cryst. Eng. Mater. 71 (6), 722 (2015).

    Article  CAS  Google Scholar 

  13. Y.Y. Hu, Z.G. Liu, K.W. Nam, O.J. Borkiewicz, J. Cheng, X. Hua, M.T. Dunstan, X.Q. Yu, K.M. Wiaderek, L.S. Du, K.W. Chapman, P.J. Chupas, X.Q. Yang, C.P. Grey, Nat. Mater. 12 (12), 1130 (2013).

    Article  CAS  Google Scholar 

  14. X. Hua, R. Robert, L.S. Du, K.M. Wiaderek, M. Leskes, K.W. Chapman, P.J. Chupas, C.P. Grey, J. Phys. Chem. C 118 (28), 15169 (2014).

    Article  CAS  Google Scholar 

  15. I.T. Joliffe, Principal Component Analysis (Springer-Verlag, New York, 2002).

    Google Scholar 

  16. www1.aps.anl.gov.

  17. www.diamond.ac.uk.

  18. www.esrf.eu.

  19. L.P. Tarasov, B.E. Warren, J. Chem. Phys. 4, 236 (1936).

    Article  CAS  Google Scholar 

  20. C. Kittel, Introduction to Solid State Physics (Wiley, 2004).

  21. R.E. Franklin, Acta Crystallogr. 3 (2), 107 (1950).

    Article  CAS  Google Scholar 

  22. R.D. Shannon, K.H. Gardner, R.H. Staley, G. Bergeret, P. Gallezot, A. Auroux, J. Phys. Chem. 89 (22), 4778 (1985).

    Article  CAS  Google Scholar 

  23. O.J. Borkiewicz, K.M. Wiaderek, P.J. Chupas, K.W. Chapman, J. Phys. Chem. Lett. 6 (11), 2081 (2015).

    Article  CAS  Google Scholar 

  24. O.J. Borkiewicz, B. Shyam, K.M. Wiaderek, C. Kurtz, P.J. Chupas, K.W. Chapman, J. Appl. Crystallogr. 45 (6), 1261 (2012).

    Article  CAS  Google Scholar 

  25. K.W. Chapman, S.H. Lapidus, P.J. Chupas, J. Appl. Crystallogr. 48 (6), 1619 (2015), http://dx.doi.org/10.1107/S1600576715016532.

  26. S.H. Lapidus, N.N. Rajput, X. Qu, K.W. Chapman, K.A. Persson, P.J. Chupas, Phys. Chem. Chem. Phys. 16 (40), 21941 (2014).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Contributions from P. Chupas, K. Wiaderek, O. Borkiewicz, S. Lapidus, B. Shyam, C. Kurtz, and collaborations with H. Liu, F. Strobridge, E. Castillo-Martinez, R. Robert, and C. Grey (University of Cambridge), N. Periera, G. Amatucci (Rutgers University), N. Rajput, and K. Persson (Lawrence Berkley National Laboratory) are gratefully acknowledged. Work done at Argonne and use of the Advanced Photon Source, an Office of Science User Facility operated for the US Department of Energy Office of Science by Argonne National Laboratory, were supported by the US Department of Energy under Contract No. DE-AC02–06CH11357. Work was supported as part of NECCES, an Energy Frontier Research Center funded by the US Department of Energy, Office of Science, Office of Basic Energy Sciences under Award Number DE-SC0001294 and DE-SC0012583, and as part of the Joint Center for Energy Storage Research (JCESR), an Energy Innovation Hub funded by the US Department of Energy, Office of Science, Basic Energy Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karena W. Chapman.

Additional information

The following article is based on the MRS Outstanding Young Investigator Award Lecture presented by Karena W. Chapman on April 9, 2015, at the 2015 Materials Research Society Spring Meeting in San Francisco. This award recognizes outstanding, interdisciplinary scientific work in materials research by a young scientist or engineer. The award recipient must also show exceptional promise as a developing leader in the materials area. Chapman received the award “for contributions to understanding the coupled structure and reactivity of energy-relevant systems and for developing the incisive experimental and analytical tools needed to interrogate these complex materials systems.”

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chapman, K.W. Emerging operando and x-ray pair distribution function methods for energy materials development. MRS Bulletin 41, 231–240 (2016). https://doi.org/10.1557/mrs.2016.26

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/mrs.2016.26

Navigation