Skip to main content

Advertisement

Log in

Metal–organic framework photophysics: Optoelectronic devices, photoswitches, sensors, and photocatalysts

  • Metal–Organic Frameworks for Electronics and Photonics
  • Published:
MRS Bulletin Aims and scope Submit manuscript

Abstract

The development of new hierarchical materials capable of efficient energy transfer along a predesigned pathway will boost various applications, ranging from organic photovoltaics to catalytic systems. Due to their exceptional tunability and structural diversity, metal–organic frameworks (MOFs) offer a unique platform to study and model directional energy-transfer processes and, thereby, an efficient path for energy utilization. This article summarizes the latest advances in MOF applications in the fields of optoelectronics, photoswitching, sensing, and photocatalysis, for which development is highly dependent on fundamental studies of MOF photophysics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. H. Furukawa, K.E. Cordova, M. O’Keeffe, O.M. Yaghi, Science 341, 974 (2013).

    Google Scholar 

  2. H.-C. Zhou, J.R. Long, O.M. Yaghi, Chem. Rev. 112, 673 (2012).

    Google Scholar 

  3. Y. He, W. Zhou, G. Qian, B. Chen, Chem. Soc. Rev. 43, 5657 (2014).

    Google Scholar 

  4. J.A. Mason, M. Veenstra, J.R. Long, Chem. Sci. 5, 32 (2014).

    Google Scholar 

  5. K. Sumida, D.L. Rogow, J.A. Mason, T.M. McDonald, E.D. Bloch, Z.R. Herm, T.-H. Bae, J.R. Long, Chem. Rev. 112, 724 (2012).

    Google Scholar 

  6. Q.-G. Zhai, X. Bu, C. Mao, X. Zhao, P. Feng, J. Am. Chem. Soc. 138, 2524 (2016).

    Google Scholar 

  7. P. Falcaro, R. Ricco, C.M. Doherty, K. Liang, A.J. Hill, M.J. Styles, Chem. Soc. Rev. 43, 5513 (2014).

    Google Scholar 

  8. V. Stavila, A.A. Talin, M.D. Allendorf, Chem. Soc. Rev. 43, 5994 (2014).

    Google Scholar 

  9. Y. Cui, Y. Yue, G. Qian, B. Chen, Chem. Rev. 112, 1126 (2012).

    Google Scholar 

  10. X. Zhang, W. Wang, Z. Hu, G. Wang, K. Uvdal, Coord. Chem. Rev. 284, 206 (2015).

    Google Scholar 

  11. Z. Hu, B.J. Deibert, J. Li, Chem. Soc. Rev. 43, 5815 (2014).

    Google Scholar 

  12. R.J. Kuppler, D.J. Timmons, Q.-R. Fang, J.-R. Li, T.A. Makal, M.D. Young, D. Yuan, D. Zhao, W. Zhuang, H.-C. Zhou, Coord. Chem. Rev. 253, 3042 (2009).

    Google Scholar 

  13. L.E. Kreno, K. Leong, O.K. Farha, M. Allendorf, R.P. Van Duyne, Chem. Rev. 112, 1105 (2012).

    Google Scholar 

  14. D. Zhao, Y. Cui, Y. Yang, G. Qian, CrystEngComm 18, 3746 (2016).

    Google Scholar 

  15. Z. Hu, W.P. Lustig, J. Zhang, C. Zheng, H. Wang, S.J. Teat, Q. Gong, N.D. Rudd, J. Li, J. Am. Chem. Soc. 137, 16209 (2015).

    Google Scholar 

  16. N.B. Shustova, A.F. Cozzolino, S. Reineke, M. Baldo, M. Dincă, J. Am. Chem. Soc. 135, 13326 (2013).

    Google Scholar 

  17. S.S. Nagarkar, T. Saha, A.V. Desai, P. Talukdar, S.K. Ghosh, Sci. Rep. 4, 7053, (2014).

    Google Scholar 

  18. A.S. Duke, E.A. Dolgopolova, R.P. Galhenage, S.C. Ammal, A. Heyden, M.D. Smith, D.A. Chen, N.B. Shustova, J. Phys. Chem. C 119, 27457 (2015).

    Google Scholar 

  19. W. Xie, S.-R. Zhang, D.-Y. Du, J.-S. Qin, S.-J. Bao, J. Li, Z.-M. Su, W.-W. He, Q. Fu, Y.-Q. Lan, Inorg. Chem. 54, 3290 (2015).

    Google Scholar 

  20. S.-M. Li, X.-J. Zheng, D.-Q. Yuan, A. Ablet, L.-P. Jin, Inorg. Chem. 51, 1201 (2012).

    Google Scholar 

  21. D.F.S. Gallis, L.E.S. Rohwer, M.A. Rodriguez, T.M. Nenoff, Chem. Mater. 26, 2943 (2014).

    Google Scholar 

  22. D.F. Sava, L.E.S. Rohwer, M.A. Rodriguez, T.M. Nenoff, J. Am. Chem. Soc. 134, 3983 (2012).

    Google Scholar 

  23. Q.-Y. Yang, M. Pan, S.-C. Wei, K. Li, B.-B. Du, C.-Y. Su, Inorg. Chem. 54, 5707 (2015).

    Google Scholar 

  24. Z.-F. Liu, M.-F. Wu, S.-H. Wang, F.-K. Zheng, G.-E. Wang, J. Chen, Y. Xiao, A.-Q. Wu, G.-C. Guo, J.-S. Huang, J. Mater. Chem. C 1, 4634 (2013).

    Google Scholar 

  25. C.-Y. Sun, X.-L. Wang, X. Zhang, C. Qin, P. Li, Z.-M. Su, D.-X. Zhu, G.-G. Shan, K.-Z. Shao, H. Wu, J. Li, Nat. Commun. 4, 2717 (2013).

    Google Scholar 

  26. Y. Cui, F. Zhu, B. Chen, G. Qian, Chem. Commun. 51, 7420 (2015).

    Google Scholar 

  27. X. Lian, D. Zhao, Y. Cui, Y. Yang, G. Qian, Chem. Commun. 51, 17676 (2015).

    Google Scholar 

  28. S.-N. Zhao, L.-J. Li, X.-Z. Song, M. Zhu, Z.-M. Hao, X. Meng, L.-L. Wu, J. Feng, S.-Y. Song, C. Wang, H.-J. Zhang, Adv. Funct. Mater. 25, 1463 (2015).

    Google Scholar 

  29. A. Cadiau, C.D.S. Brite, P.M.F.J. Costa, R.A.S. Ferreira, J. Rocha, L.D. Carlos, ACS Nano 7, 7213 (2013).

    Google Scholar 

  30. X. Liu, S. Akerboom, M. de Jong, I. Mutikainen, S. Tanase, A. Meijerink, E. Bouwman, Inorg. Chem. 54, 11323 (2015).

    Google Scholar 

  31. Y. Cui, H. Xu, Y. Yue, Z. Guo, J. Yu, Z. Chen, J. Gao, Y. Yang, G. Qian, B. Chen, J. Am. Chem. Soc. 134, 3979 (2012).

    Google Scholar 

  32. K. Leong, M.E. Foster, B.M. Wong, E.D. Spoerke, D. Van Gough, J.C. Deaton, M.D. Allendorf, J. Mater. Chem. A 2, 3389 (2014).

    Google Scholar 

  33. T. Zhang, W. Lin, Chem. Soc. Rev. 43, 5982 (2014).

    Google Scholar 

  34. C.A. Kent, B.P. Mehl, L. Ma, J.M. Papanikolas, T.J. Meyer, W.J. Lin, J. Am. Chem. Soc. 132, 12767 (2010).

    Google Scholar 

  35. C.A. Kent, D. Liu, L. Ma, J.M. Papanikolas, T.J. Meyer, W.J. Lin, J. Am. Chem. Soc. 133, 12940 (2011).

    Google Scholar 

  36. H.-J. Son, S. Jin, S. Patwardhan, S.J. Wezenberg, N.C. Jeong, M. So, C.E. Wilmer, A.A. Sarjeant, G.C. Schatz, R.Q. Snurr, O.K. Farha, G.P. Wiederrecht, J.T.J. Hupp, J. Am. Chem. Soc. 135, 862 (2013).

    Google Scholar 

  37. T.C. Narayan, T. Miyakai, S. Seki, M. Dincă, J. Am. Chem. Soc. 134, 12932 (2012).

    Google Scholar 

  38. M.C. So, G.P. Wiederrecht, J.E. Mondloch, J.T. Hupp, O.K. Farha, Chem. Commun. 51, 3501 (2015).

    Google Scholar 

  39. M.A. Nasalevich, M. van der Veen, F. Kapteijn, J. Gascon, CrystEngComm 16, 4919 (2014).

    Google Scholar 

  40. Y. Li, H. Xu, S. Ouyang, J. Ye, Phys. Chem. Chem. Phys. 18, 7563 (2016).

    Google Scholar 

  41. J.-L. Wang, C. Wang, W. Lin, ACS Catal. 2, 2630 (2012).

    Google Scholar 

  42. A. Corma, H. Garcia, Chem. Commun. 1443 (2004), doi:10.1039/B400147H.

  43. T. Hisatomi, J. Kubota, K. Domen, Chem. Soc. Rev. 43, 7520 (2014).

    Google Scholar 

  44. X. Li, J. Yu, M. Jaroniec, Chem. Soc. Rev. 45, 2603 (2016).

    Google Scholar 

  45. C. Wang, K.E. de Krafft, W. Lin, J. Am. Chem. Soc. 134, 7211 (2012).

    Google Scholar 

  46. D.E. Williams, J.A. Rietman, J.M. Maier, R. Tan, A.B. Greytak, M.D. Smith, J.A. Krause, N.B. Shustova, J. Am. Chem. Soc. 136, 11886 (2014).

    Google Scholar 

  47. J.-K. Sun, L.-X. Cai, Y.-J. Chen, Z.-H. Li, J. Zhang, Chem. Commun. 47, 6870 (2011).

    Google Scholar 

  48. C.R. Wade, M. Li, M. Dincă, Angew. Chem. Int. Ed. 52, 13377 (2013).

    Google Scholar 

Download references

Acknowledgments

N.B.S. acknowledges support from a CAREER Award from the National Science Foundation (DMR-1553634) and ASPIRE-I and III Awards granted by the USC Office of the Vice President for Research.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dolgopolova, E.A., Shustova, N.B. Metal–organic framework photophysics: Optoelectronic devices, photoswitches, sensors, and photocatalysts. MRS Bulletin 41, 890–896 (2016). https://doi.org/10.1557/mrs.2016.246

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/mrs.2016.246

Navigation