Skip to main content
Log in

Guest molecules as a design element for metal–organic frameworks

  • Metal–Organic Frameworks for Electronics and Photonics
  • Published:
MRS Bulletin Aims and scope Submit manuscript

Abstract

The well-known synthetic versatility of metal–organic frameworks (MOFs) is rooted in the ability to predict the metal-ion coordination geometry and the vast possibilities to use organic chemistry to modify the linker groups. However, the use of molecules occupying the pores as a component of framework design has been largely ignored. Recent reports show that the presence of these so-called “guests” can have dramatic effects, even when they are a seemingly innocuous species such as water or polar solvents. We term these guests “non-innocent” when their presence alters the MOF in such a way as to create a new material with properties different from the MOF without the guests. Advantages of using guest molecules to impart new properties to MOFs include the relative ease of introducing new functionalities, the ability to modify the material properties at will by removing the guest or inserting different ones, and avoidance of the difficulties associated with synthesizing new frameworks, which can be challenging even when the basic topology remains constant. In this article, we describe the “Guest@MOF” concept and provide examples illustrating its potential as a new MOF design element.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2

Similar content being viewed by others

References

  1. M.P. Suh, H.J. Park, T.K. Prasad, D.-W. Lim, Chem. Rev. 112, 782 (2012).

    Google Scholar 

  2. J.R. Li, R.J. Kuppler, H.C. Zhou, Chem. Soc. Rev. 38, 1477 (2009).

    Google Scholar 

  3. L.E. Kreno, K. Leong, O.K. Farha, M. Allendorf, R.P. Van Duyne, J.T. Hupp, Chem. Rev. 112, 1105 (2012).

    Google Scholar 

  4. J.W. Liu, L.F. Chen, H. Cui, J.Y. Zhang, L. Zhang, C.Y. Su, Chem. Soc. Rev. 43, 6011 (2014).

    Google Scholar 

  5. M.D. Allendorf, M.E. Foster, F. Leonard, V. Stavila, P.L. Feng, F.P. Doty, K. Leong, E.Y. Ma, S.R. Johnston, A.A. Talin, J. Phys. Chem. Lett. 6, 1182 (2015).

    Google Scholar 

  6. A.A. Talin, A. Centrone, A.C. Ford, M.E. Foster, V. Stavila, P. Haney, R.A. Kinney, V. Szalai, F. El Gabaly, H.P. Yoon, F. Leonard, M.D. Allendorf, Science 343, 66 (2014).

    Google Scholar 

  7. K. Leong, M.E. Foster, B.M. Wong, E.D. Spoerke, D.V. Gough, J.C. Deaton, M.D. Allendorf, J. Mater. Chem. A 2, 3389 (2014).

    Google Scholar 

  8. J.J.M. Amoore, S.M. Neville, B. Moubaraki, S.S. Iremonger, K.S. Murray, J.F. Letard, C.J. Kepert, Chem. Eur. J. 16, 1973 (2010).

    Google Scholar 

  9. M. Kurmoo, H. Kumagai, K.W. Chapman, C.J. Kepert, Chem. Commun. 24, 3012 (2005). doi: 10.1039/B500614G.

    Google Scholar 

  10. L. Pan, G. Liu, H. Li, S. Meng, L. Han, J. Shang, B. Chen, A.E. Platero-Prats, W. Lu, X.D. Zou, R.W. Li, J. Am. Chem. Soc. 136, 17477 (2014).

    Google Scholar 

  11. K.J. Erickson, F. Léonard, V. Stavila, M.E. Foster, C.D. Spataru, R.E. Jones, B.M. Foley, P.E. Hopkins, M.D. Allendorf, A.A. Talin, Adv. Mater. 27, 3453 (2015).

    Google Scholar 

  12. D.M. D’Alessandro, J.R.R. Kanga, J.S. Caddy, Aust. J. Chem. 64, 718 (2011).

    Google Scholar 

  13. L. Sun, M.G. Campbell, M. Dincă Angew. Chem. Int. Ed. 55, 3566 (2016).

    Google Scholar 

  14. B.S. Brunschwig, C. Creutz, N. Sutin, Chem. Soc. Rev. 31, 17 (2002).

    Google Scholar 

  15. R.A. Marcus, N. Sutin, Biochim. Biophys. Acta 811, 265 (1985).

    Google Scholar 

  16. M.B. Robin, P. Day, “Mixed Valence Chemistry—A Survey and Classification,” in Advances in Inorganic Chemistry and Radiochemistry, H.J. Emeléus, A.G. Sharpe, Eds. (Academic, New York, 1967), p. 248.

  17. S.S.-Y. Chui, S.M.-F. Lo, J.P.H. Charmant, A.G. Orpen, I.D. Williams, Science 283, 1148 (1999).

    Google Scholar 

  18. X.W. Nie, A. Kulkarni, D.S. Sholl, J. Phys. Chem. Lett. 6, 1586 (2015).

    Google Scholar 

  19. M. Gajek, M. Bibes, S. Fusil, K. Bouzehouane, J. Fontcuberta, A. Barthelemy, A. Fert, Nat. Mater. 6, 296 (2007).

    Google Scholar 

  20. S.-W. Cheong, M. Mostovoy, Nat. Mater. 6, 13 (2007).

    Google Scholar 

  21. G. Rogez, N. Viart, M. Drillon, Angew. Chem. Int. Ed. 49, 1921 (2010).

    Google Scholar 

  22. P. Jain, V. Ramachandran, R.J. Clark, H.D. Zhou, B.H. Toby, N.S. Dalal, H.W. Kroto, A.K. Cheetham, J. Am. Chem. Soc. 131, 13625 (2009).

    Google Scholar 

  23. A. Stroppa,P. Jain, P. Barone, M. Marsman, J.M. Perez-Mato, A.K. Cheetham, H.W. Kroto, S. Picozzi, Angew. Chem. Int. Ed. 50, 5847 (2011).

    Google Scholar 

  24. R.I. Thomson, P. Jain, A.K. Cheetham, M.A. Carpenter, Phys. Rev. B Condens. Matter 86, 214304 (2012).

    Google Scholar 

  25. Y. Tian, J. Cong, S. Shen, Y. Chai, L. Yan, S. Wang, Y. Sun, Phys. Status Solidi Rapid Res. Lett. 8, 91 (2014).

    Google Scholar 

  26. Y. Tian, S. Shen, J. Cong, L. Yan, S. Wang, Y. Sun, J. Am. Chem. Soc. 138, 782 (2016).

    Google Scholar 

  27. Y. Tian, A. Stroppa, Y. Chai, L. Yan, S. Wang, P. Barone, S. Picozzi, Y. Sun, Sci. Rep. 4, 6062 (2014).

    Google Scholar 

  28. W. Qin, B. Xu, S. Ren, Nanoscale 7, 9122 (2015).

    Google Scholar 

  29. S. Horiuchi, Y. Tokunaga, G. Giovannetti, S. Picozzi, H. Itoh, R. Shimano, R. Kumai, Y. Tokura, Nature 463, 789 (2010).

    Google Scholar 

  30. A. Hagfeldt, G. Boschloo, L.C. Sun, L. Kloo, H. Pettersson, Chem. Rev. 110, 6595 (2010).

    Google Scholar 

  31. Q. Wang, D. Ma, Chem. Soc. Rev. 39, 2387 (2010).

    Google Scholar 

  32. H. Mieno, R. Kabe, N. Notsuka, M.D. Allendorf, C. Adachi, Adv. Opt. Mater. 4, 1015 (2016), http://www.dx.doi.org/10.1002/adom.201600103.

    Google Scholar 

  33. M.D. Allendorf, C.A. Bauer, R.K. Bhakta, R.J.T. Houk, Chem. Soc. Rev. 38, 1330 (2009).

    Google Scholar 

  34. Y.J. Cui, Y.F. Yue, G.D. Qian, B.L. Chen, Chem. Rev. 112, 1126 (2012).

    Google Scholar 

  35. C.-Y. Sun, X.-L. Wang, X. Zhang, C. Qin, P. Li, Z.-M. Su, D.-X. Zhu, G.-G. Shan, K.-Z. Shao, H. Wu, J. Li, Nat. Commun. 4 (2013).

  36. W. Xie, W.W. He, D.Y. Du, S.L. Li, J.S. Qin, Z.M. Su, C.Y. Sun, Y.Q. Lan, Chem. Commun. 52, 3288 (2016).

    Google Scholar 

  37. M. Thompson, MRS Bull. 32, 694 (2007).

    Google Scholar 

  38. F.P. Doty, C.A. Bauer, A.J. Skulan, P.G. Grant, M.D. Allendorf, Adv. Mater. 21, 95 (2009).

    Google Scholar 

  39. J.J. Perry, P.L. Feng, S.T. Meek, K. Leong, F.P. Doty, M.D. Allendorf, J. Mater. Chem. 22, 10235 (2012).

    Google Scholar 

  40. P.L. Feng, J. Villone, K. Hattar, S. Mrowka, B.M. Wong, M.D. Allendorf, F. P. Doty, IEEE Trans. Nucl. Sci. 59, 3312 (2012).

    Google Scholar 

Download references

Acknowledgments

R.M. would like to thank the Alexander von Humboldt Foundation for a postdoctoral fellowship. M.A. acknowledges the Sandia National Laboratory Directed Research and Development Program. Sandia National Laboratories is a multiprogram laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the US Department of Energy’s National Nuclear Security Administration under Contract DE-AC04-94AL85000.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Allendorf, M.D., Medishetty, R. & Fischer, R.A. Guest molecules as a design element for metal–organic frameworks. MRS Bulletin 41, 865–869 (2016). https://doi.org/10.1557/mrs.2016.244

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/mrs.2016.244

Navigation