Skip to main content
Log in

Chemical principles for electroactive metal–organic frameworks

  • Metal–Organic Frameworks for Electronics and Photonics
  • Published:
MRS Bulletin Aims and scope Submit manuscript

Abstract

Metal–organic frameworks (MOFs) are porous ordered arrays of inorganic clusters connected by organic linkers. The compositional diversity of the metal and ligand, combined with varied connectivity, has yielded more than 20,000 unique structures. Electronic structure theory can provide deep insights into the fundamental chemistry and physics of these hybrid compounds and identify avenues for the design of new multifunctional materials. In this article, a number of recent advances in materials modeling of MOFs are reviewed. We present the methodology for predicting the absolute band energies (ionization potentials) of porous solids as compared to those of standard semiconductors and electrical contacts. We discuss means of controlling the optical bandgaps by chemical modification of the organic and inorganic building blocks. Finally, we outline the principles for achieving electroactive MOFs and the key challenges to be addressed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. K. Lejaeghere, T. Björkman, P. Blaha, S. Blügel, V. Blum, D. Caliste, I.E. Castelli, S.J. Clark, A. Dal Corso, S. de Gironcoli, T. Deutsch, J.K. Dewhurst, I. Di Marco, C. Draxl, M. Dułak, O. Eriksson, J.A. Flores-Livas, K.F. Garrity, L. Genovese, P. Giannozzi, M. Giantomassi, S. Goedecker, X. Gonze, O. Grånäs, E.K.U. Gross, A. Gulans, F. Gygi, D.R. Hamann, P.J. Hasnip, N.A.W. Holzwarth, D. Iuşan, D.B. Jochym, F. Jollet, D. Jones, G. Kresse, K. Koepernik, E. Küçükbenli, Y.O. Kvashnin, I.L.M. Locht, S. Lubeck, M. Marsman, N. Marzari, U. Nitzsche, L. Nordström, T. Ozaki, L. Paulatto, C.J. Pickard, W. Poelmans, M.I.J. Probert, K. Refson, M. Richter, G.-M. Rignanese, S. Saha, M. Scheffler, M. Schlipf, K. Schwarz, S. Sharma, F. Tavazza, P. Thunström, A. Tkatchenko, M. Torrent, D. Vanderbilt, M.J. van Setten, V. Van Speybroeck, J.M. Wills, J.R. Yates, G.-X. Zhang, S. Cottenier, Science 351, 1 (2016).

  2. K.T. Butler, J.M. Frost, J.M. Skelton, K.L. Svane, A. Walsh, Chem. Soc. Rev., published online March 18, 2016, http://dx.doi.org/10.1039/C5CS00841G.

  3. C.E. Wilmer, M. Leaf, C.Y. Lee, O.K. Farha, B.G. Hauser, J.T. Hupp, R.Q. Snurr, Nat. Chem. 4, 83 (2011).

    Google Scholar 

  4. http://gregchung.github.io/CoRE-MOFs.

  5. Y.G. Chung, J. Camp, M. Haranczyk, B.J. Sikora, W. Bury, V. Krungleviciute, T. Yildirim, O.K. Farha, D.S. Sholl, R.Q. Snurr, Chem. Mater. 26, 6185 (2014).

    Google Scholar 

  6. M.T. Dove, Am. Mineral. 82, 213 (1997).

    Google Scholar 

  7. G. Kieslich, A.C. Forse, S. Sun, K.T. Butler, S. Kumagai, Y. Wu, M.R. Warren, A. Walsh, C.P. Grey, A.K. Cheetham, Chem. Mater. 28, 312 (2016).

    Google Scholar 

  8. G. Kieslich, S. Kumagai, K.T. Butler, T. Okamura, C.H. Hendon, S. Sun, M. Yamashita, A. Walsh, A.K. Cheetham, Chem. Commun. 51, 15538 (2015).

    Google Scholar 

  9. A.M.A. Leguy, J.M. Frost, A.P. McMahon, V. Garcia Sakai, W. Kockelmann, C.H. Law, X. Li, F. Foglia, A. Walsh, B.C. O’Regan, J. Nelson, J.T. Cabral, P.R.F. Barnes, Nat. Commun. 6, 7124 (2015).

    Google Scholar 

  10. F. Brivio, J.M. Frost, J.M. Skelton, A.J. Jackson, O.J. Weber, M.T. Weller, A.R. Goñi, A.M.A. Leguy, P.R.F. Barnes, A. Walsh, Phys. Rev. B Condens. Matter 92, 144308 (2015).

    Google Scholar 

  11. A.B. Cairns, A.L. Goodwin, Chem. Soc. Rev. 42, 4881 (2013).

    Google Scholar 

  12. J.P. Perdew, A.Ruzsinszky, G.I. Csonka, O.A. Vydrov, G.E. Scuseria, L.A. Constantin, X. Zhou, K. Burke, Phys. Rev. Lett. 100, 136406 (2008).

    Google Scholar 

  13. C.H. Hendon, D. Tiana, T.P. Vaid, A. Walsh, J. Mater. Chem. C 3, 95 (2013).

    Google Scholar 

  14. K. Svane, P.J. Saines, A. Walsh, J. Mater. Chem. C 3, 11076 (2015).

    Google Scholar 

  15. M. Nasalevich, C.H. Hendon, J.G. Santaclara, K. Svane, B. van der Linden, S.L. Veber, M.V. Fedin, A.J. Houtepen, M.A. van der Veen, F. Kapteijn, A. Walsh, J. Gascon, Sci. Rep. 6, 23676 (2016).

    Google Scholar 

  16. A.K. Cheetham, C.N.R. Rao, R.K. Feller, Chem. Commun. 46, 4780 (2006).

    Google Scholar 

  17. J.M. Frost, K.T. Butler, F. Brivio, C.H. Hendon, M. van Schilfgaarde, A. Walsh, Nano Lett. 14, 2584 (2014).

    Google Scholar 

  18. J.H. Cavka, S. Jakobsen, U. Olsbye, N. Guillou, C. Lamberti, S. Bordiga, K.P. Lillerud, J. Am. Chem. Soc. 130, 13850 (2008).

    Google Scholar 

  19. H. Li, M. Eddaoudi, M. O’Keeffe, O.M. Yaghi, Nature 402, 276 (1999).

    Google Scholar 

  20. M. Dan-Hardi, C. Serre, T. Frot, L. Rozes, G. Maurin, C. Sanchez, G. Férey, J. Am. Chem. Soc. 131, 10857 (2009).

    Google Scholar 

  21. L. Shen, R. Liang, M. Luo, F. Jing, L. Wu, Phys. Chem. Chem. Phys. 17, 117 (2015).

    Google Scholar 

  22. C.A. Allen, S.M. Cohen, Inorg. Chem. 53, 7014 (2014).

    Google Scholar 

  23. J.E. Mondloch, W. Bury, D. Fairen-Jimenez, S. Kwon, E.J. DeMarco, M.H. Weston, A.A. Sarjeant, S.T. Nguyen, P.C. Stair, R.Q. Snurr, O.K. Farha, J.T. Hupp, J. Am. Chem. Soc. 135, 10294 (2013).

    Google Scholar 

  24. D. Yang, S.O. Odoh, T.C. Wang, O.K. Farha, J.T. Hupp, C.J. Cramer, L. Gagliardi, B.C. Gates, J. Am. Chem. Soc. 137, 7391 (2015).

    Google Scholar 

  25. H. Fei, S.M. Cohen, J. Am. Chem. Soc. 137, 2191 (2015).

    Google Scholar 

  26. C.K. Brozek, M. Dincă, J. Am. Chem. Soc. 135, 12886 (2013).

    Google Scholar 

  27. C.H. Hendon, D. Tiana, M. Fontecave, C. Sanchez, L. D’arras, C. Sassoye, L. Rozes, C. Mellot-Draznieks, A. Walsh, J. Am. Chem. Soc. 135, 10942 (2013).

    Google Scholar 

  28. K.T. Butler, C.H. Hendon, A. Walsh, J. Am. Chem. Soc. 136, 2703 (2014).

    Google Scholar 

  29. H. Kroemer, Nobel Lecture, “Quasi-Electric Fields and Band Offsets: Teaching Electrons New Tricks” (2000).

  30. J. Bardeen, Phys. Rev. 49, 635 (1936).

    Google Scholar 

  31. A. Walsh, K.T. Butler, Acc. Chem. Res. 47, 364 (2014).

    Google Scholar 

  32. E. Smith, Physica A 120A, 327 (1983).

    Google Scholar 

  33. J. Ihm, A. Zunger, M. Cohen, J. Phys. C Solid State Phys. 12, 4409 (1979).

    Google Scholar 

  34. J. Buckeridge, K.T. Butler, C.R.A. Catlow, A.J. Logsdail, D.O. Scanlon, S.A. Shevlin, S.M. Woodley, A.A. Sokol, A. Walsh, Chem. Mater. 27, 3844 (2015).

    Google Scholar 

  35. D.O. Scanlon, C.W. Dunnill, J. Buckeridge, S.A. Shevlin, A.J. Logsdail, S.M. Woodley, C.R.A. Catlow, M.J. Powell, R.G. Palgrave, I.P. Parkin, G.W. Watson, T.W. Keal, P. Sherwood, A. Walsh, A.A. Sokol, Nat. Mater. 12, 798 (2013).

    Google Scholar 

  36. https://github.com/WMD-group/MacroDensity.

  37. Z.-L. Wu, C.-H. Wang, B. Zhao, J. Dong, F. Lu, W.-H. Wang, W.-C. Wang, G.-J. Wu, J.-Z. Cui, P. Cheng. Angew. Chem. Int. Ed. Engl. 55, 4938 (2016).

    Google Scholar 

  38. S. Hamad, N.C. Hernandez, A. Aziz, A.R. Ruiz-Salvador, S. Calero, R. Grau-Crespo, J. Mater. Chem. A 3, 23458 (2015).

    Google Scholar 

  39. K.T. Butler, Y. Kumagai, F. Oba, A. Walsh, J. Mater. Chem. C 4, 1149 (2016).

    Google Scholar 

  40. G.A. Ozin, Adv. Mater. 4, 612 (1992).

    Google Scholar 

  41. C.H. Hendon, A. Walsh, Chem. Sci. 6, 3674 (2015).

    Google Scholar 

  42. C.H. Hendon, D. Tiana, A.T. Murray, D.R. Carbery, A. Walsh, Chem. Sci. 4, 4278 (2013).

    Google Scholar 

  43. D. Tiana, C. Hendon, A. Walsh, Chem. Commun. 50, 13990 (2014).

    Google Scholar 

  44. A.A. Talin, A. Centrone, A.C. Ford, M.E. Foster, V. Stavila, P. Haney, R.A. Kinney, V. Szalai, F. El Gabaly, H.P. Yoon, F. Léonard, M.D. Allendorf, Science 343, 6166 (2014).

    Google Scholar 

  45. J.K. Bristow, K.L. Svane, D. Tiana, J.M. Skelton, J.D. Gale, A. Walsh, J. Phys. Chem. C 120, 9276 (2016).

    Google Scholar 

  46. K.T. Butler, C.H. Hendon, A. Walsh, ACS Appl. Mater. Interfaces 6, 22044 (2014).

    Google Scholar 

  47. C.H. Hendon, K.E. Wittering, T.-H. Chen, W. Kaveevivitchai, I. Popov, K.T. Butler, C.C. Wilson, D.L. Cruickshank, O.Š. Miljanić, A. Walsh, Nano Lett. 15, 2149 (2015).

    Google Scholar 

  48. Web of Science, June 2016.

  49. M.D. Allendorf, A. Schwartzberg, V. Stavila, A.A. Talin, Chem. Eur. J. 17, 11372 (2011).

    Google Scholar 

Download references

Acknowledgments

We thank W. Kohn and H. Kroto for the development of density functional theory and physical properties of MOF chemistry, respectively, as well as for stimulating lectures and discussions on these topics. The research discussed here has benefited from collaboration with J.K. Bristow, D. Tiana, and K.L. Svane. We acknowledge support from The Royal Society, the European Research Council (Grant No. 27757) and the EPSRC (Grant No. EP/M009580/1 and EP/K016288/1). This work used the Extreme Science and Engineering Discovery Environment (XSEDE), which is supported by the National Science Foundation Grant Number ACI-1053575.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Walsh, A., Butler, K.T. & Hendon, C.H. Chemical principles for electroactive metal–organic frameworks. MRS Bulletin 41, 870–876 (2016). https://doi.org/10.1557/mrs.2016.243

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/mrs.2016.243

Navigation