Skip to main content
Log in

Microstructure and mechanical property considerations in additive manufacturing of aluminum alloys

  • Metallic Materials for 3D Printing
  • Published:
MRS Bulletin Aims and scope Submit manuscript

Abstract

Aluminum alloys are in high demand for additive manufacturing (AM) processing. However, the physical properties of Al alloys are less favorable for the production of repeatable and reliable parts, with factors such as surface oxide scales, high thermal conductivity, and large solidification shrinkage. Despite these characteristics, processing strategies have been developed to overcome these hurdles. The objective of this article is to highlight the different microstructure–processing–properties characteristics for the three main families of aluminum alloys: pure, casting, and wrought chemistries. The article focuses on AM processes involving solidification, including powder bed and direct energy deposition for both powder and wire feedstock.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. I. Gibson, D.W. Rosen, B. Stucker, Additive Manufacturing Technologies (Springer, New York, 2010).

    Google Scholar 

  2. C.K. Chua, K.F. Leong, 3D Printing and Additive Manufacturing Principles and Applications (World Scientific, Singapore, 2014).

    Google Scholar 

  3. S. Lampman, Ed., Weld Integrity and Performance (ASM International, Materials Park, OH, 1997).

    Google Scholar 

  4. D.D. Gu, W. Meiners, K. Wissenbach, R. Popraw, Int. Mater. Rev. 57, 133 (2012).

    Google Scholar 

  5. E. Louvis, P. Fox, C.J. Sutcliffe, J. Mater. Process. Technol. 211, 275 (2011).

    Google Scholar 

  6. D. Manfredi, F. Calignano, M. Krishnan, R. Canali, E.P. Ambrosio, E. Atzeni, Materials 6, 856 (2013).

    Google Scholar 

  7. X. Cao, W. Wallace, C. Poon, J.P. Immarigeon, Mater. Manuf. Proc. 18, 1 (2003).

    Google Scholar 

  8. E.O. Olakanmi, J. Mater. Process. Technol. 213, 1387 (2013).

    Google Scholar 

  9. M. Ameli, B. Agnew, P.S. Leung, B. Ng, C.J. Sutcliffe, J. Singh, R. McGlen, Appl. Therm. Eng. 52, 498 (2013).

    Google Scholar 

  10. B. Ahuja, M. Karg, K. Nagulin, M. Schmid, Phys. Procedia 56, 135 (2014).

    Google Scholar 

  11. M. Karg, B. Ahuja, S. Kuryntsev, A. Gorunov, M. Schmidt, Proc. 25th Solid Freeform Fabr. Symp. (The University of Texas at Austin, Austin, TX, 2014), pp. 420–436.

    Google Scholar 

  12. D. Buchbinder, W. Meiners, K. Wissenbach, R. Poprawe, J. Laser Appl. 27, S29205 (2015).

    Google Scholar 

  13. R. Chou, J. Milligan, M. Paliwal, M. Brochu, JOM 67, 590 (2015).

    Google Scholar 

  14. L.-E. Loh, C.-K. Chua, W.-Y. Yeong, J. Song, M. Mapar, S.-L. Sing, Z.-H. Liu, D.-Q. Zhang, Int. J. Heat Mass Transf. 80, 288 (2015).

    Google Scholar 

  15. C. Yan, L. Hao, A. Hussein, P. Young, J. Huang, W. Zhu, Mater. Sci. Eng. A 628, 238 (2015).

    Google Scholar 

  16. T. Kimura, T. Nakamoto, Mater. Des. 89, 1294 (2016).

    Google Scholar 

  17. T.M. Mower, M.J. Long, Mater. Sci. Eng. A 651, 198 (2016).

    Google Scholar 

  18. H. Zhang, H. Zhu, T. Qi, Z. Hu, X. Zeng, Mater. Sci. Eng. A 656, 47 (2016).

    Google Scholar 

  19. D.L. Olson, T.A. Siewert, S. Liu, G.R. Edwards, Eds., ASM Handbook, Volume 6: Welding, Brazing, and Soldering (ASM International, Materials Park, OH, 1993).

    Google Scholar 

  20. C. Xu, T.G. Langdon, J. Mater. Sci. 42, 1542 (2007).

    Google Scholar 

  21. C. Xu, K. Xia, T.G. Langdon, Acta Mater. 55, 2351 (2007).

    Google Scholar 

  22. A.P. Zhilyaev, K. Oh-ishi, T.G. Langdon, T.R. McNelley, Mater. Sci. Eng. A 410–411, 277 (2005).

    Google Scholar 

  23. E.O. Olakanmi, R.F. Cochrane, K.W. Dalgarno, J. Mater. Process. Technol. 211, 113 (2011).

    Google Scholar 

  24. N.T. Aboulkhair, N.M. Everitt, I. Ashcroft, C. Tuck, Addit. Manuf. 1–4, 77 (2014).

    Google Scholar 

  25. E. Brandl, U. Heckenberger, V. Holzinger, D. Buchbinder, Mater. Des. 34, 159 (2012).

    Google Scholar 

  26. X.P. Li, K.M. O’Donnell, T.B. Sercombe, Addit. Manuf. 10, 10 (2016).

    Google Scholar 

  27. L. Thijs, K. Kempen, J.-P. Kruth, J. Van Humbeeck, Acta Mater. 61, 1809 (2013).

    Google Scholar 

  28. X.P. Li, X.J. Wang, M. Saunders, A. Suvorova, L.C. Zhang, Y.J. Liu, M.H. Fang, Z.H. Huang, T.B. Sercombe, Acta Mater. 95, 74 (2015).

    Google Scholar 

  29. R. Chou, A. Ghosh, S.C. Chou, M. Paliwal, M. Brochu, Addit. Manuf. (forthcoming).

  30. K. Kempen, L. Thijs, J. Van Humbeeck, J.P. Kruth, Phys. Procedia 39, 439 (2012).

    Google Scholar 

  31. N. Read, W. Wang, K. Essa, M.M. Attallah, Mater. Des. 65, 417 (2015).

    Google Scholar 

  32. D. Zhang, “Entwicklung des Selective Laser Melting (SLM) für Aluminiumwerkstoffe,” (Dissertation, RWTH Aachen, Germany, 2001).

    Google Scholar 

  33. X.J. Wang, L.C. Zhang, M.H. Fang, T.B. Sercombe, Mater. Sci. Eng. A 597, 370 (2014).

    Google Scholar 

  34. K.G. Prashanth, S. Scudino, H.J. Klauss, K.B. Surreddi, L. Löber, Z. Wang, A.K. Chaubey, U. Kühn, J. Eckert, Mater. Sci. Eng. A 590, 153 (2014).

    Google Scholar 

  35. P. Ma, K.G. Prashanth, S. Scudino, Y. Jia, H. Wang, C. Zou, Z. Wei, J. Eckert, Metals 4, 28 (2014).

    Google Scholar 

  36. D. Buchbinder, “Generative Fertigung von Aluminiumbauteilen für die Serienproduktion” (Fraunhofer Institute, Aachen, Germany, 2010).

    Google Scholar 

  37. M. Javidani, J. Arreguin-Zavala, J. Danovitch, Y. Tian, M. Brochu, J. Therm. Spray Technol. (forthcoming).

  38. G.P. Dinda, A.K. Dasgupta, J. Mazumder, Surf. Coat. Technol. 206, 2152 (2012).

    Google Scholar 

  39. D.W. Heard, S. Brophy, M. Brochu, Can. Metall. Q. 51, 302 (2012).

    Google Scholar 

  40. A.S. Haselhuhn, B. Wijnen, G.C. Anzalone, P.G. Sanders, J.M. Pearce, J. Mater. Process. Technol. 226, 50 (2015).

    Google Scholar 

  41. J.J. Dunkley, in ASM Handbook, Volume 7: Powder Metal Technologies and Applications (ASM International, Materials Park, OH, 1998), pp. 35–52.

    Google Scholar 

  42. S.-H. Park, B.-H. Hur, S.-Y. Kim, D.-K. Ahn, D.-I. Ha, in 65th World Foundry Congress (2002), pp. 515–524.

    Google Scholar 

  43. R. Gehm, “High-Strength Aluminum Powder Developed for Additive Manufacturing in Aerospace, Automotive,” (SAE International, June 4, 2015), available at http://articles.sae.org/14175.

    Google Scholar 

  44. R.N. Lumley, Ed., Fundamentals of Aluminium Metallurgy: Production, Processing and Applications (Woodhead Publishing, Oxford, UK, 2011).

    Google Scholar 

  45. S. Kou, Welding Metallurgy (Wiley, Hoboken, NJ, 2002).

    Google Scholar 

  46. K. Taminger, R.A. Hafley, Proc. 13th Solid Freeform Fabr. Symp. (2002), pp. 482–489.

    Google Scholar 

  47. T.B. Sercombe, G.B. Schaffer, Science 301, 1225 (2003).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. Ding.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ding, Y., Muñiz-Lerma, J.A., Trask, M. et al. Microstructure and mechanical property considerations in additive manufacturing of aluminum alloys. MRS Bulletin 41, 745–751 (2016). https://doi.org/10.1557/mrs.2016.214

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/mrs.2016.214

Navigation