Skip to main content

Advertisement

Log in

Laser additive manufacturing of bulk and porous shape-memory NiTi alloys: From processes to potential biomedical applications

  • Metallic Materials for 3D Printing
  • Published:
MRS Bulletin Aims and scope Submit manuscript

Abstract

NiTi alloys are well known not only due to their exceptional shape-memory ability to recover their primary shape, but also because they show high ductility, excellent corrosion and wear resistance, and good biological compatibility. They have received significant attention especially in the field of laser additive manufacturing (AM). Among laser AM techniques, selective laser melting and laser metal deposition are utilized to exploit the unique properties of NiTi for fabricating complex shapes. This article reviews the properties of bulk and porous laser-made NiTi alloys as influenced by both process and material parameters. The effects of processing parameters on density, shape-memory response, microstructure, mechanical properties, surface corrosion, and biological properties are discussed. The article also describes potential opportunities where laser AM processes can be applied to fabricate dedicated NiTi components for medical applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10

Similar content being viewed by others

References

  1. J. Van Humbeeck, Mater. Sci. Eng. A 273, 134 (1999).

    Google Scholar 

  2. T. Duerig, A. Pelton, D. Stöckel, Mater. Sci. Eng. A 273, 149 (1999).

    Google Scholar 

  3. D.S. Levi, N. Kusnezov, G.P. Carman, Pediatr. Res. 63, 552 (2008).

    Google Scholar 

  4. J. Mohd Jani, M. Leary, A. Subic, M.A. Gibson, Mater. Des. 56, 1078 (2014).

    Google Scholar 

  5. K. Otsuka, X. Ren, Intermetallics 7, 511 (1999).

    Google Scholar 

  6. C. Liu, H. Qin, P.T. Mather, J. Mater. Chem. 17, 1543 (2007).

    Google Scholar 

  7. K. Otsuka, T. Kakeshita, MRS Bull. 27, 91 (2002).

    Google Scholar 

  8. S. Barbarino, E.I.S. Flores, R.M. Ajaj, I. Dayyani, M.I. Friswell, Smart Mater. Struct. 23, 063001 (2014).

    Google Scholar 

  9. S. Nemat-Nasser, W.-G. Guo, Mech. Mater. 38, 463 (2006).

    Google Scholar 

  10. B. Ye, B.S. Majumdar, I. Dutta, Acta Mater. 57, 2403 (2009).

    Google Scholar 

  11. K. Bhattacharya, R.V. Kohn, Acta Mater. 44, 529 (1996).

    Google Scholar 

  12. M.R. Daymond, M.L. Young, J.D. Almer, D.C. Dunand, Acta Mater. 55, 3929 (2007).

    Google Scholar 

  13. S. Dadbakhsh, B. Vrancken, J.-P. Kruth, J. Luyten, J. Van Humbeeck, Mater. Sci. Eng. A 650, 225 (2016).

    Google Scholar 

  14. S.E. Bishara, R.D. Barrett, M.I. Selim, Am. J. Orthod. Dentofacial Orthop. 103, 115 (1993).

    Google Scholar 

  15. O. Prymak, D. Bogdanski, M. Köller, S.A. Esenwein, G. Muhr, F. Beckmann, T. Donath, M. Assad, M. Epple, Biomaterials 26, 5801 (2005).

    Google Scholar 

  16. A. Bansiddhi, T.D. Sargeant, S.I. Stupp, D.C. Dunand, Acta Biomater. 4, 773 (2008).

    Google Scholar 

  17. R.D. Barrett, S.E. Bishara, J.K. Quinn, Am. J. Orthod. Dentofacial Orthop. 103, 8 (1993).

    Google Scholar 

  18. M.T. Andani, N. Shayesteh Moghaddam, C. Haberland, D. Dean, M.J. Miller, M. Elahinia, Acta Biomater. 10, 4058 (2014).

    Google Scholar 

  19. R. Pfeifer, C.W. Müller, C. Hurschler, S. Kaierle, V. Wesling, H. Haferkamp, Procedia CIRP 5, 253 (2013).

    Google Scholar 

  20. C. Lexcellent, “The World of Shape-Memory Alloys,” in Shape-Memory Alloys Handbook (Wiley, Hoboken, NJ, 2013), p. 11.

    Google Scholar 

  21. D.E. Hodgson, M.H. Wu, R.J. Biermann, “Shape Memory Alloys,” in ASM Handbook, Volume 2, Properties and Selection, Nonferrous Alloys and Special-Purpose Materials (ASM International, Materials Park, OH 1990), p. 897.

    Google Scholar 

  22. M.H. Elahinia, M. Hashemi, M. Tabesh, S.B. Bhaduri, Prog. Mater. Sci. 57, 911 (2012).

    Google Scholar 

  23. W. Yan, Mater. Sci. Eng. A 427, 348 (2006).

    Google Scholar 

  24. L. Yan, Y. Liu, J. Mater. Res. 30, 186 (2015).

    Google Scholar 

  25. K. Otsuka, X. Ren, Prog. Mater. Sci. 50, 511 (2005).

    Google Scholar 

  26. ASTM International, “ASTM F2063-00” (2000), available at http://www.astm.org/DATABASE.CART/HISTORICAL/F2063-00.htm.

    Google Scholar 

  27. J. Frenzel, E.P. George, A. Dlouhy, C. Somsen, M.F.X. Wagner, G. Eggeler, Acta Mater. 58, 3444 (2010).

    Google Scholar 

  28. J. Khalil-Allafi, B. Amin-Ahmadi, J. Alloys Compd. 487, 363 (2009).

    Google Scholar 

  29. S. Dadbakhsh, M. Speirs, J.-P. Kruth, J. Schrooten, J. Luyten, J. Van Humbeeck, Adv. Eng. Mater. 16, 1140 (2014).

    Google Scholar 

  30. Y. Motemani, M. Nili-Ahmadabadi, M.J. Tan, M. Bornapour, S. Rayagan, J. Alloys Compd. 469, 164 (2009).

    Google Scholar 

  31. Y. Liu, Z.L. Xie, J. Van Humbeeck, L. Delaey, Acta Mater. 47, 645 (1999).

    Google Scholar 

  32. J. Frenzel, Z. Zhang, K. Neuking, G. Eggeler, J. Alloys Compd. 385, 214 (2004).

    Google Scholar 

  33. K. McNamara, J. Butler, A.A. Gandhi, S.A.M. Tofail, in Reference Module in Materials Science and Materials Engineering (Elsevier, Amsterdam, 2016).

    Google Scholar 

  34. K. Weinert, V. Petzoldt, Mater. Sci. Eng. A 378, 180 (2004).

    Google Scholar 

  35. J.-T. Yeom, J.H. Kim, J.-K. Hong, S.W. Kim, C.-H. Park, T.H. Nam, K.-Y. Lee, Mater. Res. Bull. 58, 234 (2014).

    Google Scholar 

  36. T. Bormann, R. Schumacher, B. Müller, M. Mertmann, M. Wild, J. Mater. Eng. Perform. 21, 2519 (2012).

    Google Scholar 

  37. A.T. Clare, P.R. Chalker, S. Davies, C.J. Sutcliffe, S. Tsopanos, Int. J. Mech. Mater. Des. 4, 181 (2008).

    Google Scholar 

  38. S. Dadbakhsh, M. Speirs, J.-P. Kruth, J. Van Humbeeck, CIRP Ann. 64, 209 (2015).

    Google Scholar 

  39. T. Habijan, C. Haberland, H. Meier, J. Frenzel, J. Wittsiepe, C. Wuwer, C. Greulich, T.A. Schildhauer, M. Köller, Mater. Sci. Eng. C 33, 419 (2013).

    Google Scholar 

  40. I. Shishkovsky, I. Yadroitsev, I. Smurov, Phys. Procedia 39, 447 (2012).

    Google Scholar 

  41. H. Kyogoku, J.A. Ramos, D.L. Bourell, Proc. 14th Solid Freeform Fabr. Symp. (The University of Texas at Austin, Austin, TX, 2003), p. 668.

    Google Scholar 

  42. B.V. Krishna, S. Bose, A. Bandyopadhyay, Metall. Mater. Trans. A 38, 1096 (2007).

    Google Scholar 

  43. A. Bandyopadhyay, B.V. Krishna, W. Xue, S. Bose, J. Mater. Sci. 20, S29 (2009).

    Google Scholar 

  44. M.N. Mokgalaka, S.L. Pityana, P.A.I. Popoola, T. Mathebula, Adv. Mater. Sci. Eng. ID 363917 (2014).

    Google Scholar 

  45. S. Khademzadeh, N. Parvin, P.F. Bariani, Int. J. Precis. Eng. Manuf. 16, 2333 (2015).

    Google Scholar 

  46. W.E. Frazier, J. Mater. Eng. Perform. 23, 1917 (2014).

    Google Scholar 

  47. “Optomec Launches New 3D Printer for Metal Additive Manufacturing” (3Ders, 2013), http://www.3ders.org/articles/20130612-optomec-launches-new-3d-printer-for-metal-additive-manufacturing.html.

  48. J.-P. Kruth, S. Dadbakhsh, B. Vrancken, K. Kempen, J. Vleugels, J.V. Humbeeck, “Additive Manufacturing of Metals via Selective Laser Melting,” in Additive Manufacturing, T.S. Srivatsan, T.S. Sudarshan, Eds. (CRC Press, Boca Raton, FL, 2015), p. 69.

    Google Scholar 

  49. J. Walker, M. Elahinia, C. Haberland, Proc. ASME 2013 Conf. Smart Mater., Adaptive Struct. Intell. Syst. (Snowbird, UT, 2013), p. 1.

    Google Scholar 

  50. T. Bormann, B. Müller, M. Schinhammer, A. Kessler, P. Thalmann, M. de Wild, Mater. Charact. 94, 189 (2014).

    Google Scholar 

  51. S. Saedi, A.S. Turabi, M.T. Andani, C. Haberland, M. Elahinia, H. Karaca, Smart Mater. Struct. 25, 035005 (2016).

    Google Scholar 

  52. S. Saedi, A.S. Turabi, M.T. Andani, C. Haberland, H. Karaca, M. Elahinia, J. Alloys Compd. 677, 204 (2016).

    Google Scholar 

  53. I.V. Shishkovsky, I.A. Yadroitsev, I.Y. Smurov, Tech. Phys. Lett. 39, 1081 (2013).

    Google Scholar 

  54. B. Zhang, J. Chen, C. Coddet, J. Mater. Sci. Technol. 29, 863 (2013).

    Google Scholar 

  55. C. Haberland, M. Elahinia, J.M. Walker, H. Meier, J. Frenzel, Smart Mater. Struct. 23, 104002 (2014).

    Google Scholar 

  56. S. Khademzadeh, S. Carmignato, N. Parvin, F. Zanini, P.F. Bariani, Mater. Des. 90, 745 (2016).

    Google Scholar 

  57. P.R. Halani, Y.C. Shin, Metall. Mater. Trans. A 43, 650 (2012).

    Google Scholar 

  58. J.J. Marattukalam, A.K. Singh, S. Datta, M. Das, V.K. Balla, S. Bontha, S.K. Kalpathy, Mater. Sci. Eng. C 57, 309 (2015).

    Google Scholar 

  59. K. Malukhin, K. Ehmann, J. Manuf. Sci. Eng. 128, 691 (2006).

    Google Scholar 

  60. M.J. Mahtabi, N. Shamsaei, M.R. Mitchell, J. Mech. Behav. Biomed. Mater. 50, 228 (2015).

    Google Scholar 

  61. S. Bernard, V. Krishna Balla, S. Bose, A. Bandyopadhyay, J. Mech. Behav. Biomed. Mater. 13, 62 (2012).

    Google Scholar 

  62. S. Bernard, V.K. Balla, S. Bose, A. Bandyopadhyay, Mater. Sci. Eng. C 31, 815 (2011).

    Google Scholar 

  63. N. Figueira, T.M. Silva, M.J. Carmezim, J.C.S. Fernandes, Electrochim. Acta 54, 921 (2009).

    Google Scholar 

  64. V. Muhonen, R. Heikkinen, A. Danilov, T. Jämsä, J. Tuukkanen, J. Mater. Sci. 18, 959 (2007).

    Google Scholar 

  65. H.C. Man, Z.D. Cui, T.M. Yue, Scr. Mater. 45, 1447 (2001).

    Google Scholar 

  66. Z.D. Cui, H.C. Man, X.J. Yang, Surf. Coat. Technol. 192, 347 (2005).

    Google Scholar 

  67. C.W. Chan, I. Hussain, D.G. Waugh, J. Lawrence, H.C. Man, Mater. Sci. Eng. C 42, 254 (2014).

    Google Scholar 

  68. S. Strauß, S. Dudziak, R. Hagemann, S. Barcikowski, M. Fliess, M. Israelowitz, D. Kracht, J.W. Kuhbier, C. Radtke, K. Reimers, P.M. Vogt, PLoS One 7, e51264 (2012).

    Google Scholar 

  69. J.L.M. Putters, D.M.K.S. Kaulesar Sukul, G.R. de Zeeuw, A. Bijma, P.A. Besselink, Eur. Surg. Res. 24, 378 (1992).

    Google Scholar 

  70. N. Munroe, C. Pulletikurthi, W. Haider, J. Mater. Eng. Perform. 18, 765 (2009).

    Google Scholar 

  71. S. Shabalovskaya, J. Anderegg, J. Van Humbeeck, Acta Biomater. 4, 447 (2008).

    Google Scholar 

  72. T.B. Sercombe, X. Xu, V.J. Challis, R. Green, S. Yue, Z. Zhang, P.D. Lee, Mater. Des. 67, 501 (2015).

    Google Scholar 

  73. X. Wang, S. Xu, S. Zhou, W. Xu, M. Leary, P. Choong, M. Qian, M. Brandt, Y.M. Xie, Biomaterials 83, 127 (2016).

    Google Scholar 

  74. S. Truscello, G. Kerckhofs, S. Van Bael, G. Pyka, J. Schrooten, H. Van Oosterwyck, Acta Biomater. 8, 1648 (2012).

    Google Scholar 

  75. S. Van Bael, Y.C. Chai, S. Truscello, M. Moesen, G. Kerckhofs, H. Van Oosterwyck, J.-P. Kruth, J. Schrooten, Acta Biomater. 8, 2824 (2012).

    Google Scholar 

  76. M.R. Dias, P.R. Fernandes, J.M. Guedes, S.J. Hollister, J. Biomech. 45, 938 (2012).

    Google Scholar 

  77. Z. Zhang, D. Jones, S. Yue, P.D. Lee, J.R. Jones, C.J. Sutcliffe, E. Jones, Mater. Sci. Eng. C 33, 4055 (2013).

    Google Scholar 

  78. L. Petrini, F. Migliavacca, J. Metall. 2011, ID 501483 (2011).

    Google Scholar 

  79. I.V. Shishkovskii, I.A. Yadroitsev, I.Y. Smurov, Powder Metall. Met. Ceram. 50, 275 (2011).

    Google Scholar 

  80. Y. Lin, Y. Lei, H. Fu, J. Lin, J. Mater. Eng. Perform. 24, 3717 (2015).

    Google Scholar 

  81. Y. Lin, Y. Lei, H. Fu, J. Lin, Mater. Des. 80, 82 (2015).

    Google Scholar 

  82. T.E. Abioye, P.K. Farayibi, P. Kinnel, A.T. Clare, Int. J. Adv. Manuf. Technol. 79, 843 (2015).

    Google Scholar 

  83. D. Tarnita, D. Tarnita, D. Bolcu, “Orthopaedic Modular Implants Based on Shape Memory Alloys,” in Biomedical Engineering—From Theory to Applications, R. Fazel, Ed. (InTech, 2011).

  84. K. Dai, “Ti-Ni-Mo Shape-Memory Alloys for Medical Applications,” in Shape Memory Implants, L. Yahia, Ed. (Springer Berlin, Heidelberg, 2000), p. 105.

    Google Scholar 

  85. V.E. Gunther, Delay Law and New Class of Materials and Implants in Medicine (STT Publishing, Northampton, MA, 2000).

    Google Scholar 

  86. A. Saigal, M. Fonte, Mater. Sci. Eng. A 528, 5551 (2011).

    Google Scholar 

Download references

Acknowledgements

W e would like to thank A. Ahadi (National Institute for Materials Science, Tsukuba, Japan) for preparation of this work, as well as financial support from the Flemish IWT-MultiMet Project (No. 150010) and EU BioTiNet Project (Grant No. 264635, under the EU Marie Curie ITN Project).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sasan Dadbakhsh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dadbakhsh, S., Speirs, M., Van Humbeeck, J. et al. Laser additive manufacturing of bulk and porous shape-memory NiTi alloys: From processes to potential biomedical applications. MRS Bulletin 41, 765–774 (2016). https://doi.org/10.1557/mrs.2016.209

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/mrs.2016.209

Navigation