Skip to main content

Advertisement

Log in

Synchrotron-based x-ray absorption spectroscopy for energy materials

  • Synchrotron Radiation Research in Materials Science
  • Published:
MRS Bulletin Aims and scope Submit manuscript

Abstract

X-ray absorption spectroscopy (XAS) is a widely used characterization technique to explore the local geometric and electronic structures of materials with element specificity. XAS measurements are performed at synchrotron radiation sources that provide brilliant, tunable, and monochromatic energy photons. The advantages of XAS include good elemental, chemical, and orbital sensitivities, which all stem from inherent electron excitation and transition processes. XAS is categorized into soft (<2000 eV) and hard (>5000 eV) x-ray regimes, based on the incident photon energy. Soft x-rays can probe the K-edges of low-Z (atomic number) elements, including Li, C, N, O, and F, and the L-edges of 3 d transition metals, whose K-edge is within the hard x-ray regime. All of these elements are essential components of energy materials. This article introduces the principle of XAS and reviews some recent applications in energy storage and energy conversion, illustrating the capabilities of XAS to investigate the fundamental properties of materials from the points of view of atomic and electronic structures, which play crucial roles in understanding the reaction mechanisms in highperformance devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. K.-D. Liss, A. Bartels, A. Schreyer, H. Clemens, Textures Microstruct. 35, 219 (2003).

    Google Scholar 

  2. J.J. Rehr, R.C. Albers, Rev. Mod. Phys. 72, 621 (2000).

  3. F de Groot, A. Kotani, Core Level Spectroscopy of Solids (Taylor & Francis, Hoboken, NJ, 2008).

  4. M. Armand, J.M. Tarascon, Nature 451, 652 (2008).

  5. J.B. Goodenough, K.-S. Park, J. Am. Chem. Soc. 135, 1167 (2013).

  6. K. Mizushima, P.C. Jones, P.J. Wiseman, J.B. Goodenough, Mater. Res. Bull. 15, 783 (1980).

  7. A.K. Padhi, K.S. Nanjundaswamy, J.B. Goodenough, J. Electrochem. Soc. 144, 1188 (1997).

  8. M.M. Thackeray, P.J. Johnson, L.A. Depicciotto, P.G. Bruce, J.B. Goodenough, Mater. Res. Bull. 19, 179 (1984).

  9. W.-S. Yoon, K.Y. Chung, K.-H. Oh, K.-B. Kim, J. Power Sources 119–121, 706 (2003).

  10. W.-S. Yoon, K.-B. Kim, M.G. Kim, M.-K. Lee, H.J. Shin, J.-M. Lee, J.-S. Lee, C.-H. Yo, J. Phys. Chem. B 106, 2526 (2002).

  11. X. Liu, J. Liu, R. Qiao, Y. Yu, H. Li, L. Suo, Y. Hu, Y. Chuang, G. Shu, F. Chou, T. Weng, D. Nordlund, D. Sokaras, Y. Wang, H. Lin, B. Barbiellini, A. Bansil, X. Song, Z. Liu, S. Yan, G. Liu, S. Qiao, T.J. Richardson, D. Prendergast, Z. Hussain, F.M.F. de Groot, W. Yang, J. Am. Chem. Soc. 134, 13708 (2012).

  12. W.-S. Yoon, M. Balasubramanian, K.Y. Chung, X.-Q. Yang, J. McBreen, C.P. Grey, D.A. Fischer, J. Am. Chem. Soc. 127, 17479 (2005).

  13. W. Yang, X. Liu, R. Qiao, P. Olalde-Velasco, J.D. Spear, L. Roseguo, J.X. Pepper, Y.-D. Chuang, J.D. Denlinger, Z. Hussain, J. Electron. Spectrosc. Relat. Phenom. 190, 64 (2013).

  14. R. Qiao, Y. Wang, P. Olalde-Velasco, H. Li, Y.-S. Hu, W. Yang, J. Power Sources 273, 1120 (2014).

  15. Y.-N. Zhou, J. Ma, E. Hu, X. Yu, L. Gu, K.-W. Nam, L. Chen, Z. Wang, X.-Q. Yang, Nat. Commun. 5, 5381 (2014).

  16. M. Gauthier, T.J. Carney, A. Grimaud, L. Giordano, N. Pour, H.-H. Chang D.P. Fenning, S.F. Lux, O. Paschos, C. Bauer, F. Maglia, S. Lupart, P. Lamp, Y. Shao-Horn, J. Phys. Chem. Lett. 6, 4653 (2015).

  17. M. Balasubramanian, H.S. Lee, X. Sun, X.Q. Yang, A.R. Moodenbaugh J. McBreen, D.A. Fischer, Z. Fu, Electrochem. Solid-State Lett. 5, A22 (2002).

  18. C. Delacourt, A. Kwong, X. Liu, R. Qiao, W.L. Yang, P. Lu, S.J. Harris V. Srinivasan, J. Electrochem. Soc. 160, A1099 (2013).

  19. P.G. Bruce, S.A. Freunberger, L.J. Hardwick, J.-M. Tarascon, Nat. Mater. 11, 19 (2011).

  20. Y. Cui, A. Abouimrane, J. Lu, T. Bolin, Y. Ren, W. Weng, C. Sun, V.A. Maroni S.M. Heald, K. Amine, J. Am. Chem. Soc. 135, 8047 (2013).

  21. T.A. Pascal, K.H. Wujcik, J. Velasco-Velez, C. Wu, A.A. Teran, M. Kapilashrami J. Cabana, J. Guo, M. Salmeron, N. Balsara, D. Prendergast, J. Phys. Chem. Lett. 5, 1547 (2014).

  22. K.H. Wujcik, J. Velasco-Velez, C.H. Wu, T. Pascal, A.A. Teran, M.A. Marcus, J. Cabana, J. Guo, D. Prendergast, M. Salmerón, N.P. Balsara, J. Electrochem. Soc. 161, A1100 (2014).

  23. L. Ji, M. Rao, H. Zheng, L. Zhang, Y. Li, W. Duan, J. Guo, E.J. Cairns, Y. Zhang J. Am. Chem. Soc. 133, 18522 (2011).

  24. G. Centi, S. Perathoner, Catal. Today 148, 191 (2009).

  25. K.P. Kuhl, E.R. Cave, D.N. Abram, T. F. Jaramillo, Energy Environ. Sci. 5, 7050 (2012).

  26. D. Friebel, F. Mbuga, S. Rajasekaran, D.J. Miller, H. Ogasawara, R. Alonso-Mori D. Sokaras, D. Nordlund, T.-C. Weng, A. Nilsson, J. Phys. Chem. C 118, 7954 (2014).

  27. O.V. Safonova, M. Tromp, J.A. van Bokhoven, F.M.F. de Groot, J. Evans P. Glatzel, J. Phys. Chem. B 110, 16162 (2006).

  28. P. Glatzel, F.M.F. de Groot, O. Manoilova, D. Grandjean, B.M. Weckhuysen U. Bergmann, R. Barrea, Phys. Rev. B Condens. Matter 72, 014117 (2005).

  29. F. Sette, J. Stohr, A.P. Hitchcock, Chem. Phys. Lett. 110, 517 (1984).

  30. J. Stohr, F. Sette, A.L. Johnson, Phys. Rev. Lett. 53, 1684 (1984).

  31. M.G. Walter, E.L. Warren, J.R. McKone, S.W. Boettcher, Q. Mi, E.A. Santori N.S. Lewis, Chem. Rev. 110, 6446 (2010).

  32. D. Friebel, M.W. Louie, M. Bajdich, K.E. Sanwald, Y. Cai, A.M. Wise M.-J. Cheng, D. Sokaras, T.-C. Weng, R. Alonso-Mori, R.C. Davis, J.R. Bargar J.K. Norskov, A. Nilsson, A.T. Bell, J. Am. Chem. Soc. 137, 1305 (2015).

  33. T.-J. Kuehn, J. Hormes, N. Matoussevitch, H. Boennemann, P. Glatzel, Inorg. Chem. 53, 8367 (2014).

  34. M.M. Grush, G. Christou, K. Hamalainen, S.P. Cramer, J. Am. Chem. Soc. 117, 5895 (1995).

  35. H.Tueysuez, Y.J. Hwang, S.B. Khan, A.M. Asiri, P.Yang, Nano Res. 6, 47 (2013).

  36. Y. Liang, Y. Li, H. Wang, J. Zhou, J. Wang, T. Regier, H. Dai, Nat. Mater. 10, 780 (2011).

  37. F. Jiao, H. Frei, Angew. Chem. Int. Ed. 48, 1841 (2009).

  38. H.-Y. Wang, S.-F. Hung, H.-Y. Chen, T.-S. Chan, H.M. Chen, B. Liu, J. Am. Chem. Soc. 138, 36 (2016).

  39. G. Bunker, Introduction to XAFS: A Practical Guide to X-Ray Absorption Fine Structure Spectroscopy (Cambridge University Press, New York, 2010).

  40. J.-J. Velasco-Velez, C.H. Wu, T.A. Pascal, L.F. Wan, J. Guo, D. Prendergast, M. Salmeron, Science 346, 831 (2014).

  41. I. Waluyo, D. Nordlund, U. Bergmann, D. Schlesinger, L.G.M. Pettersson A. Nilsson, J. Chem. Phys. 140, 244506 (2014).

  42. D. Sokaras, D. Nordlund, T.C. Weng, R.A. Mori, P. Velikov, D. Wenger A. Garachtchenko, M. George, V. Borzenets, B. Johnson, Q. Qian, T. Rabedeau U. Bergmann, Rev. Sci. Instrum. 83, 043112 (2012).

  43. A. Nilsson, D. Nordlund, I. Waluyo, N. Huang, H. Ogasawara, S. Kaya U. Bergmann, L.A. Naeslund, H. Ostrom, P. Wernet, K.J. Andersson, T. Schiros, L.G.M. Pettersson, J. Electron. Spectrosc. Relat. Phenom. 177, 99 (2010).

  44. L.A. Naslund, D.C. Edwards, P. Wernet, U. Bergmann, H. Ogasawara L.G.M. Pettersson, S. Myneni, A. Nilsson, J. Phys. Chem. A 109, 5995 (2005).

  45. N. Huang, D. Nordlund, C. Huang, U. Bergmann, T.M. Weiss, L.G.M. Pettersson A. Nilsson, J. Chem. Phys. 135, 164509 (2011).

  46. U. Bergmann, H. Groenzin, O.C. Mullins, P. Glatzel, J. Fetzer, S.P. Cramer Pet. Sci. Technol. 22, 863 (2004).

  47. P. Glatzel, J. Singh, K.O. Kvashnina, J.A. van Bokhoven, J. Am. Chem. Soc. 132, 2555 (2010).

  48. J.C. Swarbrick, T.-C. Weng, K. Schulte, A.N. Khlobystov, P. Glatzel, Phys. Chem. Chem. Phys. 12, 9693 (2010).

  49. J.C. Swarbrick, Y. Kvashnin, K. Schulte, K. Seenivasan, C. Lamberti, P. Glatzel Inorg. Chem. 49, 8323 (2010).

  50. Y.-T. Tseng, C.-H. Chen, J.-Y. Lin, B.-H. Li, Y.-H. Lu, C.-H. Lin, H.-T. Chen T.-C. Weng, D. Sokaras, H.-Y. Chen, Y.-L. Soo, T.-T. Lu, Chem. Eur. J. 21 17570 (2015).

  51. T.-T. Lu, T.-C. Weng, W.-F. Liaw, Angew. Chem. Int. Ed. 53, 11562 (2014).

  52. C.J. Pollock, S. DeBeer, J. Am. Chem. Soc. 133, 5594 (2011).

  53. K.M. Lancaster, K.D. Finkelstein, S. DeBeer, Inorg. Chem. 50, 6767 (2011).

  54. M.U. Delgado-Jaime, S. DeBeer, M. Bauer, Chem. Eur. J. 19, 15888 (2013).

    Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (21473235, 11227902), One Hundred Person Project of the Chinese Academy of Sciences, Shanghai Pujiang Program (14PJ1410400), and NSAF (U1530402).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaosong Liu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, X., Weng, T.C. Synchrotron-based x-ray absorption spectroscopy for energy materials. MRS Bulletin 41, 466–472 (2016). https://doi.org/10.1557/mrs.2016.113

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/mrs.2016.113

Navigation