Skip to main content
Log in

Mechanics of organic-inorganic biointerfaces—Implications for strength and creep properties

  • Multiscale mechanics of biological, bioinspired, and biomedical materials
  • Published:
MRS Bulletin Aims and scope Submit manuscript

Abstract

From the biological/chemical perspective, interface concepts related to the cell surface/synthetic biomaterial interface and the extracellular matrix/biomolecule interface have wide applications in medical and biological technologies. Interfaces also play a significant role in determining structural integrity and mechanical creep and strength properties of biomaterials. Structural arrangement of interfaces combined with interfacial interactions between organic and inorganic phases significantly affects the mechanical properties of biological materials, allowing for a unique combination of seemingly inconsistent properties, such as fracture strength and tensile strength being both high—as opposed to traditional engineering materials, which have high fracture strength linked to low tensile strength and vice versa. While there has been a tremendous amount of work focused on the effects of structural arrangements on biomaterial properties, both experimental and computational studies of the strength, deformation, and viscosity of the interface itself are limited to just a few systems. Even in such studies, the actual interface stress is rarely analyzed, and correlated to the overall material strength or creep properties. This article provides a focused overview of such studies in hard biological materials, followed by a new vision of how the results of interfacial molecular studies could be consistently linked to multiscale, micromechanics-based perceptions of hierarchical biological materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11

Similar content being viewed by others

References

  1. P. Fratzl, R. Weinkamer, Prog. Mater. Sci. 52, 1263 (2007).

    Google Scholar 

  2. M.A. Meyers, P.Y. Chen, A.Y.M. Lin, Y. Seki, Prog. Mater. Sci. 53, 1 (2008).

    Google Scholar 

  3. J.Y. Rho, L. Kuhn-Spearing, P. Zioupos, Med. Eng. Phys. 20, 92 (1998).

    Google Scholar 

  4. M.E. Launey, R.O. Ritchie, Adv. Mater. 21, 2103 (2009).

    Google Scholar 

  5. D.K. Dubey, V. Tomar, Ann. Biomed. Eng. 38, 2040 (2010).

    Google Scholar 

  6. R.A. Vaia, E.P. Giannelis, MRS Bull. 26, 394 (2001).

    Google Scholar 

  7. W.J. Landis, K.J. Hodgens, M.J. Song, J.A. Arena, S. Kiyonaga, M. Marko, C. Owen, B.F. Mcewen, J. Struct. Biol. 117, 24 (1996).

    Google Scholar 

  8. W.J. Landis, K.J. Hodgens, J. Arena, M.J. Song, B.F. McEwen, Microsc. Res. Tech. 33, 192 (1996).

    Google Scholar 

  9. P. Fratzl, N. Fratzlzelman, K. Klaushofer, G. Vogl, K. Koller, Calcif. Tissue Int. 48, 407 (1991).

    Google Scholar 

  10. S. Weiner, Y. Talmon, W. Traub, Int. J. Biol. Macromol. 5, 325 (1983).

    Google Scholar 

  11. A. Al-Sawalmih, C.H. Li, S. Siegel, H. Fabritius, S.B. Yi, D. Raabe, P. Fratzl, O. Pris. Adv. Funct. Mater. 18, 3307 (2008).

    Google Scholar 

  12. C. Morin, C. Hellmich, Ultrasonics 54, 1251 (2014).

    Google Scholar 

  13. L. Eberhardsteiner, C. Hellmich, S. Scheiner, Comput. Methods Biomech. Biomed. Eng. 17, 48 (2014).

    Google Scholar 

  14. A. Fritsch, C. Hellmich, L. Dormieux, J. Theor. Biol. 260, 230 (2009).

    Google Scholar 

  15. A. Fritsch, C. Hellmich, J. Theor. Biol. 244, 597 (2007).

    Google Scholar 

  16. S. Nikolov, D. Raabe, Biophys. J. 94, 4220 (2008).

    Google Scholar 

  17. M. Shahidi, B. Pichler, C. Hellmich, Eur. J. Mech. A Solids 45, 41 (2014).

    Google Scholar 

  18. A. Fritsch, L. Dormieux, C. Hellmich, J. Sanahuja, J. Mater. Sci. 42, 8824 (2007).

    Google Scholar 

  19. T. Qu, V. Tomar, Proceedings of the Society of Engineering Science 51st Annual Technical Meeting, A. Bajaj, P. Zavattieri, M. Koslowski, T. Siegmund, Eds. (Purdue University Libraries Scholarly Publishing Services, West Lafayette, IN, 1 – 3 October 2014).

    Google Scholar 

  20. R. Bhowmik, K.S. Katti, D.R. Katti, J. Mater. Sci. 42, 8795 (2007).

    Google Scholar 

  21. P. Ghosh, D.R. Katti, K.S. Katti, Biomacromolecules 8, 851 (2007).

    Google Scholar 

  22. D.R. Katti, S.M. Pradhan, K.S. Katti, J. Biomech. 43, 1723 (2010).

    Google Scholar 

  23. R. Bhowmik, K.S. Katti, D.R. Katti, J. Eng. Mech. 135, 413 (2009).

    Google Scholar 

  24. R. Bhowmik, K.S. Katti, D.R. Katti, “ Influence of Mineral-Polymer Interactions on Molecular Mechanics of Polymer in Composite Bone Biomaterials,” Mater. Res. Soc. Symp. Proc. 978, R. Devanathan, M.J. Caturla, A. Kubota, A. Chartier, S. Phillpot, Eds. (Materials Research Society, Warrendale, PA, 2007), p. 0978-GG0914–0905-FF0909–0905.

    Google Scholar 

  25. D.K. Dubey, V. Tomar, J. Eng. Mater. Technol. 135, 021015 (2013).

    Google Scholar 

  26. D.K. Dubey, V. Tomar, J. Mech. Phys. Solids 57, 1702 (2009).

    Google Scholar 

  27. D.K. Dubey, V. Tomar, Acta Biomater. 5, 2704 (2009).

    Google Scholar 

  28. D.K. Dubey, V. Tomar, J. Phys. Condens. Matter 21, 205103 (2009).

    Google Scholar 

  29. D.K. Dubey, V. Tomar, Mater. Sci. Eng. C 29, 2133 (2009).

    Google Scholar 

  30. D.K. Dubey, V. Tomar, Appl. Phys. Lett. 96, 023703 (2010).

    Google Scholar 

  31. S. Lees, K. Prostak. Connect. Tissue Res. 18, 41 (1988).

    Google Scholar 

  32. S. Lees, Int. J. Biol. Macromol. 6, 321 (1984).

    Google Scholar 

  33. B. Alexander, T.L. Daulton, G.M. Genin, J. Lipner, J.D. Pasteris, B. Wopenka, S. Thomopoulos, J. R. Soc. Interface. 9, 1774 (2012).

    Google Scholar 

  34. C. Hellmich, F.-J. Ulm, Biomech. Model Mechanobiol. 2, 21 (2003).

    Google Scholar 

  35. N. Sasaki, S. Odajima, J. Biomech. 29, 655 (1996).

    Google Scholar 

  36. S.J. Eppell, B.N. Smith, H. Kahn, R. Ballarini, J. R. Soc. Interface 3, 117 (2005).

    Google Scholar 

  37. H.S. Gupta, W. Wagermaier, Z.A. Zickler, D.R.B. Aroush, S.S. Funari, P. Roschger, H.D. Wagner, P. Fratzl. Nano Lett. 5, 2108 (2005).

    Google Scholar 

  38. A.J. Hodge, J.A. Petruska, Aspects of Protein Structure: Proceedings of a Symposium, G.N. Ramachandran, Ed. (Academic Press, Massachusetts, 1963), pp. 289 – 300.

    Google Scholar 

  39. G.E. Fantner, T. Hassenkam, J.H. Kindt, J.C. Weaver, H. Birkedal, L. Pechenik, J.A. Cutroni, G.A.G. Cidade, G.D. Stucky, D.E. Morse, P.K. Hansma, Nat. Mater. 4, 612 (2005).

    Google Scholar 

  40. P.J. Thurner, B. Erickson, R. Jungmann, Z. Schriock, J.C. Weaver, G.E. Fantner, G. Schitter, D.E. Morse, P.K. Hansma, Eng. Fract. Mech. 74, 1928 (2007).

    Google Scholar 

  41. B.H. Ji, H. Gao, J. Mech. Phys. Solids 52, 1963 (2004).

    Google Scholar 

  42. B.H. Ji, J. Biomech. 41, 259 (2008).

    Google Scholar 

  43. A.S. Posner, R.A. Beebe, Semin. Arthritis Rheum. 4, 267 (1975).

    Google Scholar 

  44. A.D. Simone, L. Vitaglaino, R. Berisio, Biochem. Biophys. Res. Commun. 372, 121 (2008).

    Google Scholar 

  45. F. Barthelat, H.D. Espinosa, Exp. Mech. 47, 311 (2007).

    Google Scholar 

  46. D. Zhang, U. Chippada, K. Jordan, Ann. Biomed. Eng. 35, 1216 (2007).

    Google Scholar 

  47. J.C. Phillips, R. Braun, W. Wang, J. Gumbart, E. Tajkhorshid, E. Villa, C. Chipot, R.D. Skeel, L. Kale, K. Schulten, J. Comput. Chem. 26, 1781 (2005).

    Google Scholar 

  48. S. Frankland, V. Harik, Surf. Sci. 525, L103 (2003).

    Google Scholar 

  49. T. Qu, D. Verma, V. Tomar, “ A Nanomechanics Based Investigation into Interface Thermomechanics of Collagen and Chitin Based Biomaterial,” in SEM 2015 Annual Conference and Exposition on Experimental and Applied Mechanics (Costa Mesa, CA, 2015).

  50. T. Qu, V. Tomar, Mater. Sci. Eng. C 38C, 28 (2014).

    Google Scholar 

  51. F. Lelievre, D. Bernache-Assollant, T. Chartier, J. Mater. Sci. – Mater. Med. 7, 489 (1996).

    Google Scholar 

  52. Y. Ichikawa, K. Kawamura, N. Fujii, T. Nattavut, Int. J. Numer. Methods Eng. 54, 1717 (2002).

    Google Scholar 

  53. W. Knauss, Comprehensive Structural Integrity 2, 383 (2003).

    Google Scholar 

  54. Y.J. Yoon, G. Yang, S.C. Cowin, Biomech. Model. Mechanobiol. 1, 83 (2002).

    Google Scholar 

  55. T. Iyo, Y. Maki, N. Sasaki, M. Nakata, J. Biomech. 37, 1433 (2004).

    Google Scholar 

  56. J. Salençon, Handbook of Continuum Mechanics: General Concepts-Thermoelasticity (Springer, New York, 2001).

    Google Scholar 

  57. J. Almer, S. Stock, J. Struct. Biol. 157, 365 (2007).

    Google Scholar 

  58. H.A. Barnes, J. Non-Newtonian Fluid Mech. 70, 1 (1997).

    Google Scholar 

  59. P. Coussot, Phys. Rev. Lett. 74, 3971 (1995).

    Google Scholar 

  60. N.J. Wagner, J.F. Brady, Phys. Today 62, 27 (2009).

    Google Scholar 

  61. D.M. Knapp, V.H. Barocas, A.G. Moon, K. Yoo, L.R. Petzold, R.T. Tranquillo, J. Rheol. 41, 971 (1997).

    Google Scholar 

  62. V.H. Barocas, A.G. Moon, R.T. Tranquillo, J. Biomech. Eng. 117, 161 (1995).

    Google Scholar 

  63. J.M. Dealy, J. Wang, Melt Rheology and Its Applications in the Plastics Industry (Springer, New York, 2013).

    Google Scholar 

  64. G. Bylund, T. Pak, Dairy Processing Handbook (Tetra Pak Processing Systems AB, Lund, Sweden, 2003).

    Google Scholar 

  65. A. Franck, “Understanding Rheology of Thermoplastic Polymers” (TA Instruments, 2004); available at http://www.tainstruments.com/pdf/literature/AAN013_V_1_U_Thermoplast.pdf.

  66. S. Newman, M. Cloitre, C. Allain, G. Forgacs, D. Beysens, Biopolymers 41, 337 (1997).

    Google Scholar 

Download references

Acknowledgements

T.Q. acknowledges support from the US Department of Energy Grant DE-SC0008619, D.V. acknowledges support from National Science Foundation Grant CMMI-1131112, and M.S. and C.H. acknowledge financial support from the European Research Council under grant #257023.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tao Qu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qu, T., Verma, D., Shahidi, M. et al. Mechanics of organic-inorganic biointerfaces—Implications for strength and creep properties. MRS Bulletin 40, 349–358 (2015). https://doi.org/10.1557/mrs.2015.70

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/mrs.2015.70

Navigation