Skip to main content

Advertisement

Log in

Energetics at the nanoscale: Impacts for geochemistry, the environment, and materials

  • Technical Feature
  • Published:
MRS Bulletin Aims and scope Submit manuscript

Abstract

Nanoparticles are ubiquitous in both natural and synthetic environments, providing much of the chemical reactivity for geochemical, planetary, environmental, and technological processes. However, this reactivity and differences between the bulk and nanoscale are thermodynamically, as well as kinetically, controlled. Energetic effects arising from differences in surface energies of different nanomaterials lead to changes in which phases are thermodynamically stable under given conditions. This results in crossovers in polymorphic stability as a function of particle size and substantial shifts in the positions of dehydration and redox equilibria. Examples of these phenomena in aluminum, cobalt, iron, and manganese oxides are presented, and implications for catalysts, battery materials, and other functional oxides are discussed. A hypothesis is presented that low surface energy and the resulting relatively weak water binding on the surface leads to better function when electrons or ions are transferred at the solid-solution interface.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. A.V. Radha, T. Forbes, C.E. Killian, P.U.P.A. Gilbert, A. Navrotsky, Proc. Natl. Acad. Sci. U.S.A. 107, 16438 (2010).

    Article  CAS  Google Scholar 

  2. A. Navrotsky, ChemPhysChem 12, 2207 (2011).

    Article  CAS  Google Scholar 

  3. A. Navrotsky, Int. J. Quantum Chem. 109, 2647 (2009).

    Article  CAS  Google Scholar 

  4. A. Navrotsky, Phys. Chem. Miner. 24, 222 (1997).

    Article  CAS  Google Scholar 

  5. A. Navrotsky, J. Am. Ceram. Soc. 97, 3349 (2014).

    Article  CAS  Google Scholar 

  6. J.M. McHale, A. Auroux, A.J. Perrotta, A. Navrotsky, Science 277, 788 (1997).

    Article  CAS  Google Scholar 

  7. S.V. Ushakov, A. Navrotsky, Appl. Phys. Lett. 87, 164103 (2005).

    Article  Google Scholar 

  8. M.R. Ranade, A. Navrotsky, H.Z. Zhang, J.F. Banfield, S.H. Elder, A. Zaban, P.H. Borse, S.K. Kulkarni, G.S. Doran, H.J. Whitfield, Proc. Natl. Acad. Sci. U.S.A. 99 (Suppl. 2), 6476 (2002).

    Article  CAS  Google Scholar 

  9. A.A. Levchenko, G. Li, J. Boerio-Goates, B.F. Woodfield, A. Navrotsky, Chem. Mater. 18, 6324 (2006).

    Article  CAS  Google Scholar 

  10. R.H.R. Castro, S.V. Ushakov, L. Gengembre, D. Gouvêa, A. Navrotsky, Chem. Mater. 18, 1867 (2006).

    Article  CAS  Google Scholar 

  11. J. Majzlan, A. Navrotsky, W.H. Casey, Clays Clay Miner. 48, 699 (2000).

    Article  CAS  Google Scholar 

  12. A. Navrotsky, L. Mazeina, J. Majzlan, Science 319, 1635 (2008).

    Article  CAS  Google Scholar 

  13. N. Birkner, A. Navrotsky, Am. Mineral. 97, 1291 (2012).

    Article  CAS  Google Scholar 

  14. A. Navrotsky, C. Ma, K. Lilova, N. Birkner, Science 330, 199 (2010).

    Article  CAS  Google Scholar 

  15. N. Birkner, A. Navrotsky, Proc. Natl. Acad. Sci. U.S.A. 111, 6209 (2014).

    Article  CAS  Google Scholar 

  16. K.I. Lilova, C.I. Pearce, K.M. Rosso, A. Navrotsky, ChemPhysChem 15 3655 (2014).

    Article  CAS  Google Scholar 

  17. N. Birkner, S. Nayeri, B. Pashaei, M. Najafpour, W.H. Casey, A. Navrotsky Proc. Natl. Acad. Sci. U.S.A. 110, 8801 (2013).

    Article  CAS  Google Scholar 

  18. J. Drazin, R.H.R. Castro, J. Phys. Chem. C 118, 10131 (2014).

    Article  CAS  Google Scholar 

  19. P.S. Maram, G.C.C. Costa, A. Navrotsky, Angew. Chem. Int. Ed. Engl. 52 12139 (2013).

    Article  CAS  Google Scholar 

  20. D. Qian, Y. Hinuma, H. Chen, L.-S. Du, K.J. Carroll, G. Ceder, C.P. Grey Y.S. Meng, J. Am. Chem. Soc. 134, 6096 (2012).

    Article  CAS  Google Scholar 

Download references

Acknowledgments

I thank the many students and postdocs who have worked with me on these projects, the many colleagues who have encouraged me and provided spirited discussions and constructive criticism, and the National Science Foundation and US Department of Energy for almost continuous support of this line of research from both the geochemical and materials point of view.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexandra Navrotsky.

Additional information

The following article is based on a Symposium X (Frontiers of Materials Research) presentation given by Alexandra Navrotsky at the 2015 MRS Spring Meeting in San Francisco.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Navrotsky, A. Energetics at the nanoscale: Impacts for geochemistry, the environment, and materials. MRS Bulletin 41, 139–145 (2016). https://doi.org/10.1557/mrs.2015.336

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/mrs.2015.336

Navigation