Skip to main content
Log in

Nanomaterials under stress: A new opportunity for nanomaterials synthesis and engineering

  • Technical Feature
  • Published:
MRS Bulletin Aims and scope Submit manuscript

Abstract

Precise control of structural parameters through nanoscale engineering to continuously tailor optical and electronic properties of functional nanomaterials remains an outstanding challenge. Previous work focused largely on chemical or physical interactions that occur under ambient pressures. In this article, we introduce a new pressure-directed assembly and fabrication method that uses a mechanical compressive force applied to nanoparticles (NPs) to induce structural phase transitions and consolidate new nanomaterials with precisely controlled structures and tunable properties. By manipulating NP coupling through external pressure instead of through chemistry, a reversible change in assembly structure and properties can be demonstrated. In addition, over a certain threshold, the external pressure forces these NPs into contact, allowing the formation and consolidation of one- to three-dimensional nanostructures. Through stress-induced NP assembly, unusual materials engineering and synthesis, in which morphology and architecture can be readily tuned to produce desired optical and electrical properties, appear feasible.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. G.A. DeVries, M. Brunnbauer, Y. Hu, A.M. Jackson, B. Long, B.T. Neltner, O. Uzun, B.H. Wunsch, F. Stellacci, Science 315, 358 (2007).

    Article  Google Scholar 

  2. S.H. Sun, C.B. Murray, D. Weller, L. Folks, A. Moser, Science 287, 1989 (2000).

    Article  CAS  Google Scholar 

  3. C.B. Murray, C.R. Kagan, M.G. Bawendi, Science 270, 1335 (1995).

    Article  CAS  Google Scholar 

  4. S.Y. Park, A.K.R. Lytton-Jean, B. Lee, S. Weigand, G.C. Schatz, C.A. Mirkin, Nature 451, 553 (2008).

    Article  CAS  Google Scholar 

  5. H. Fan, K. Yang, D.M. Boye, T. Sigmon, K.J. Malloy, H. Xu, G.P. Lopez, C.J. Brinker, Science 304, 567 (2004).

    Article  CAS  Google Scholar 

  6. A.P. Alivisatos, Science 271, 933 (1996).

    Article  CAS  Google Scholar 

  7. H. Zeng, J. Li, J.P. Liu, Z.L. Wang, S. Sun, Nature 420, 395 (2002).

    Article  CAS  Google Scholar 

  8. C.P. Collier, R.J. Saykally, J.J. Shiang, S.E. Henrichs, J.R. Heath, Science 277, 1978 (1997).

    Article  CAS  Google Scholar 

  9. Z. Tang, N.A. Kotov, M. Giersig, Science 297, 237 (2002).

    Article  CAS  Google Scholar 

  10. K.-M. Sung, D.W. Mosley, B.R. Peelle, S. Zhang, J.M. Jacobson, J. Am. Chem. Soc. 126, 5064 (2004).

    Article  CAS  Google Scholar 

  11. J.G. Worden, A.W. Shaffer, Q. Huo, Chem. Commun. 5, 518 (2004) doi: 10.1039/B312819A.

  12. H. Yan, S.H. Park, G. Finkelstein, J.H. Reif, T.H. LaBean, Science 301, 1882 (2003).

    Article  CAS  Google Scholar 

  13. J. Sharma, R. Chhabra, A. Cheng, J. Brownell, Y. Liu, H. Yan, Science 323, 112 (2009).

    Article  CAS  Google Scholar 

  14. H. Wang, D.W. Brandl, P. Nordlander, N.J. Halas, Acc. Chem. Res. 40, 53 (2007).

    Article  Google Scholar 

  15. E. Ozbay, Science 311, 189 (2006).

    Article  CAS  Google Scholar 

  16. M.-H. Lin, H.-Y. Chen, S. Gwo, J. Am. Chem. Soc. 132, 11259 (2010)

    Article  CAS  Google Scholar 

  17. C.L. Choi, A.P. Alivisatos, Annu. Rev. Phys. Chem. 61, 369 (2010).

    Article  CAS  Google Scholar 

  18. J. Valentine, S. Zhang, T. Zentgraf, E. Ulin-Avila, D.A. Genov, G. Bartal, X. Zhang, Nature 455, 376 (2008).

    Article  CAS  Google Scholar 

  19. N. Liu, H. Guo, L. Fu, S. Kaiser, H. Schweizer, H. Giessen, Nat. Mater. 7, 31 (2008).

    Article  CAS  Google Scholar 

  20. H.A. Atwater, A. Polman, Nat. Mater. 9, 205 (2010).

    Article  CAS  Google Scholar 

  21. N. Verellen, Y. Sonnefraud, H. Sobhani, F. Hao, V.V. Moshchalkov, PV. Dorpe, P. Nordlander, S.A. Maier, Nano Lett. 9, 1663 (2009).

    Article  CAS  Google Scholar 

  22. P.K. Jain, M.A. El-Sayed, J. Phys. Chem. C 112, 4954 (2008).

    Article  CAS  Google Scholar 

  23. M. Hu, J. Chen, Z.Y Li, L. Au, G.V. Hartland, X. Li, M. Marquez, Y. Xia, Chem. Soc. Rev. 35, (11), 1084 (2006).

    Article  CAS  Google Scholar 

  24. C. Burda, X. Chen, R. Narayanan, M.A. El-Sayed, Chem. Rev. 105, 1025 (2005).

    Article  CAS  Google Scholar 

  25. H. Fan, Z. Chen, C.J. Brinker, J. Clawson, T. Alam, J. Am. Chem. Soc. 127, 13746 (2005).

    Article  CAS  Google Scholar 

  26. H. Fan, E. Leve, J. Gabaldon, A. Wright, R. Haddad, C. Brinker, Adv. Mater. 17, 2587 (2005).

    Article  CAS  Google Scholar 

  27. H. Fan, G.P. Lopez, Langmuir 13, 119 (1997).

    Article  CAS  Google Scholar 

  28. H. Fan, A. Wright, J. Gabaldon, A. Rodriguez, C. Brinker, YB. Jiang, Adv. Funct. Mater. 16, 891 (2006).

    Article  CAS  Google Scholar 

  29. H.Y. Fan, J. Gabaldon, C.J. Brinker, Y.B. Jiang, Chem. Commun. 22, 2323 (2006).

    Article  Google Scholar 

  30. D. Dunphy, H. Fan, X. Li, J. Wang, C.J. Brinker, Langmuir 24, 10575 (2008).

    Article  CAS  Google Scholar 

  31. A. Wright, J. Gabaldon, D.B. Burckel, Y.-B. Jiang, Z.R. Tian, J. Liu, C.J. Brinker H. Fan, Chem. Mater. 18, 3034 (2006).

    Article  CAS  Google Scholar 

  32. A. Tao, P. Sinsermsuksakul, P. Yang, Nat. Nanotechnol. 2, 435 (2007)

    Article  CAS  Google Scholar 

  33. J.R. Heath, C.M. Knobler, D.V. Leff, J. Phys. Chem. B 101, 189 (1997)

    Article  CAS  Google Scholar 

  34. P.K. Jain, W. Huang, M.A. El-Sayed, Nano Lett. 7, 2080 (2007).

    Article  CAS  Google Scholar 

  35. H. Wu, Z. Wang, H. Fan, J. Am. Chem. Soc. 136, 7634 (2014).

    Article  CAS  Google Scholar 

  36. H. Wu, F. Bai, Z. Sun, R.E. Haddad, D.M. Boye, Z. Wang, J.Y Huang, H. Fan J. Am. Chem. Soc. 132, 12826 (2010).

    Article  CAS  Google Scholar 

  37. H. Wu, F. Bai, Z. Sun, R.E. Haddad, D.M. Boye, Z. Wang, H. Fan, Angew. Chem. Int. Ed. 122, 8609 (2010).

    Article  Google Scholar 

  38. W. Li, H. Fan, J. Li, Nano Lett. 14, 4951 (2014).

    Article  CAS  Google Scholar 

  39. B. Li, X. Wen, R. Li, Z. Wang, P.G. Clem, H. Fan, Nat. Commun. 5, 4179 (2014) doi: 10.1038/ncomms5179.

    Article  CAS  Google Scholar 

  40. Z. Wang, C. Schliehe, T. Wang, Y. Nagaoka, Y.C. Cao, W.A. Bassett, H. Wu H. Fan, H. Weller, J. Am. Chem. Soc. 133, 14484 (2011).

    Article  CAS  Google Scholar 

  41. H.K. Mao, P.M. Bell, Science 200 1145 (1978).

    Article  CAS  Google Scholar 

  42. K. Jacobs, A.P. Alivisatos, Rev. Mineral. Geochem. 44, 59 (2001).

    Article  CAS  Google Scholar 

  43. S. Tolbert, A.P. Alivisatos, Annu. Rev. Phys. Chem. 46, 595 (1995).

    Article  CAS  Google Scholar 

  44. M. Grünwald, K. Lutker, A.P. Alivisatos, E. Rabani, P.L. Geissler, Nano Lett. 13, 1367 (2013).

    Article  Google Scholar 

  45. N. Zheng, J. Fan, G.D. Stucky, J. Am. Chem. Soc. 128, 6550 (2006).

    Article  CAS  Google Scholar 

  46. R. Beckman, E. Johnston-Halperin, Y. Luo, J.E. Green, J.R. Heath, Science 310, 465 (2005).

    Article  CAS  Google Scholar 

  47. Z. Huo, C.-K. Tsung, W. Huang, X. Zhang, P. Yang, Nano Lett. 8, 2041 (2008).

    Article  CAS  Google Scholar 

  48. X. Lu, M.S. Yavuz, H.-Y. Tuan, B.A. Korgel, Y. Xia, J. Am. Chem. Soc. 130, 8900 (2008).

    Article  CAS  Google Scholar 

  49. C. Wang, Y. Hu, C.M. Lieber, S. Sun, J. Am. Chem. Soc. 130, 8902 (2008).

    Article  CAS  Google Scholar 

  50. J.G. Worden, Q. Dai, Q. Huo, Chem. Commun. 14, 1536 (2006) doi: 10.1039/ B600641H.

    Article  Google Scholar 

  51. Y. Lu, G.L. Liu, L.P. Lee, Nano Lett. 5, 5 (2004).

    Article  Google Scholar 

  52. Y. Xia, Y. Xiong, B. Lim, S.E. Skrabalak, Angew. Chem. Int. Ed. 48, 60 (2009).

    Article  CAS  Google Scholar 

  53. S. Sun, Adv. Mater. 18, 393 (2006).

    Article  CAS  Google Scholar 

  54. S.R. Quake, A. Scherer, Science 290, 1536 (2000).

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work is supported by the US Department of Energy, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering. Sandia is a multiprogram laboratory operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the US Department of Energy’s National Nuclear Security Administration under Contract DE-AC04–94AL85000. Sandia National Laboratory’s lab-directed research and development program is acknowledged.

Author information

Authors and Affiliations

Authors

Additional information

The following article is based on a Fred Kavli Distinguished Lectureship in Nanoscience presentation given by Hongyou Fan at the 2015 Materials Research Society Spring Meeting in San Francisco.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bai, F., Bian, K., Li, B. et al. Nanomaterials under stress: A new opportunity for nanomaterials synthesis and engineering. MRS Bulletin 40, 961–970 (2015). https://doi.org/10.1557/mrs.2015.260

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/mrs.2015.260

Navigation