Skip to main content
Log in

Composite epitaxial thin films: A new platform for tuning, probing, and exploiting mesoscale oxides

  • Mesoscale Materials, Phenomena, and Functionality
  • Published:
MRS Bulletin Aims and scope Submit manuscript

Abstract

Self-assembled epitaxial oxide composite films represent a new material form in which very high-quality mesoscopic structures can be created. The main focus has been on coupled electronic devices, but so far, only a very narrow range of compositions and structure types have been explored. Insufficient attention has been paid to the very wide window of possible materials combinations or to the novel materials properties that could be induced. Both of these aspects need to be addressed before we attain mesoscale devices with new properties. In this article, we review the unique materials properties of these epitaxially directed mesoscale composite structures, discussing their very high crystallinity, structural uniformity, and orientation. We also review how the structures can be size-tuned, from ∼2 nm up to ∼50 nm, and how they can be spatially ordered. We discuss how unusual strain states can be induced in the structures, and how epitaxial stabilization of the mesoscale surfaces within the films eliminates problems of surface degradation inherent to “free” nano/mesostructures. Several exemplar systems are given to show that composite films represent an unrivaled new approach to engineering new properties into mesoscale systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. P. Hinterdorfer, Y.F. Dufrene, Nat. Methods 3, 347 (2006).

    Article  CAS  Google Scholar 

  2. M. Imboden, D. Bishop, Phys. Today 67, 45 (2014).

    Article  Google Scholar 

  3. X. Michalet, F.F. Pinaud, L.A. Bentolila, J.M. Tsay, S. Doose, J.J. Li, G. Sundaresan, A.M. Wu, S.S. Gambhir, S. Weiss, Science 307, 538 (2005).

    Article  CAS  Google Scholar 

  4. J.N. Anker, W.P. Hall, O. Lyandres, N.C. Shah, J. Zhao, R.P. Van Duyne, Nat. Mater. 7, 442 (2008).

    Article  CAS  Google Scholar 

  5. A. Corma, Chem. Rev. 97, 2373 (1997).

    Article  CAS  Google Scholar 

  6. K. Ariga, Y. Yamauchi, M. Aono, APL Mater. 3 (5), 061001 (2015).

    Article  Google Scholar 

  7. S. Keten, M.J. Buehler, J. R. Soc. Interface 7, 1709 (2010).

    Article  CAS  Google Scholar 

  8. H.Y. Hwang, Y. Iwasa, M. Kawasaki, B. Keimer, N. Nagaosa, Y. Tokura, Nat. Mater. 11, 103 (2012).

    Article  CAS  Google Scholar 

  9. M. Niederberger, Acc. Chem. Res. 40, 793 (2007).

    Article  CAS  Google Scholar 

  10. W. Zhang, R. Ramesh, J.L. MacManus-Driscoll, H. Wang, MRS Bull. 40, 736 (2015).

    Article  Google Scholar 

  11. J.L. MacManus-Driscoll, Adv. Funct. Mater. 20, 2035 (2010).

    Article  CAS  Google Scholar 

  12. R. Zhao, W. Li, J.H. Lee, E.M. Choi, Y. Liang, W. Zhang, R. Tang, H. Wang, Q. Jia, J.L. MacManus-Driscoll, H. Yang, Adv. Funct. Mater. 24, 5240 (2014).

    Article  CAS  Google Scholar 

  13. H. Zheng, J. Wang, S.E. Lofland, Z. Ma, L. Mohaddes-Ardabili, T. Zhao, L. Salamanca-Riba, S.R. Shinde, S.B. Ogale, F. Bai, D. Viehland, Y. Jia, D.G. Schlom, M. Wuttig, A. Roytburd, R. Ramesh, Science 303, 661 (2004).

    Article  CAS  Google Scholar 

  14. T. Fix, E.-M. Choi, J.W.A. Robinson, S.B. Lee, A. Chen, B. Prasad, H. Wang, M.G. Blamire, J.L. MacManus-Driscoll, Nano Lett. 13, 5886 (2013).

    Article  CAS  Google Scholar 

  15. H.-J. Liu, L.-Y. Chen, Q. He, C.-W. Liang, Y.-Z. Chen, Y.-S. Chien, Y.-H. Hsieh, S.-J. Lin, E. Arenholz, C.-W. Luo, Y.-L. Chueh, Y.-C. Chen, Y.-H. Chu, ACS Nano 6, 6952 (2012).

    Article  CAS  Google Scholar 

  16. S.A. Harrington, J. Zhai, S. Denev, V. Gopalan, H. Wang, Z. Bi, S.A.T. Redfern, S.-H. Baek, C.W. Bark, C.-B. Eom, Q. Jia, M.E. Vickers, J.L. MacManus-Driscoll, Nat. Nanotechnol. 6, 491 (2011).

    Article  CAS  Google Scholar 

  17. Y. Ni, W. Rao, A.G. Khachaturyan, Nano Lett. 9, 3275 (2009).

    Article  CAS  Google Scholar 

  18. C.L. Zhang, S. Yeo, Y. Horibe, Y.J. Choi, S. Guha, M. Croft, S.W. Cheong, S. Mori, Appl. Phys. Lett. 90, 133123 (2007).

    Article  Google Scholar 

  19. S. Park, Y. Horibe, T. Asada, L.S. Wielunski, N. Lee, P.L. Bonanno, S.M. O’Malley, A.A. Sirenko, A. Kazimirov, M. Tanimura, T. Gustafsson, S.W. Cheong, Nano Lett. 8, 720 (2008).

    Article  CAS  Google Scholar 

  20. K.R. Mecke, Acta Phys. Pol. B 28, 1747 (1997).

    CAS  Google Scholar 

  21. Y. Lu, C. Wang, Y. Gao, R. Shi, X. Liu, Y. Wang, Phys. Rev. Lett. 109, 086101 (2012).

    Article  Google Scholar 

  22. B.S. Kang, H. Wang, J.L. MacManus-Driscoll, Y. Li, Q.X. Jia, I. Mihut, J.B. Betts, Appl. Phys. Lett. 88, 192514 (2006).

    Article  Google Scholar 

  23. A. Chen, Z. Bi, C.-F. Tsai, J. Lee, Q. Su, X. Zhang, Q. Jia, J.L. MacManus-Driscoll, H. Wang, Adv. Funct. Mater. 21, 2423 (2011).

    Article  CAS  Google Scholar 

  24. A. Chen, W. Zhang, J. Jian, H. Wang, C.-F. Tsai, Q. Su, Q. Jia, J.L. MacManus-Driscoll, J. Mater. Res. 28, 1707 (2013).

    Article  CAS  Google Scholar 

  25. Z. Bi, E. Weal, H. Luo, A. Chen, J.L. MacManus-Driscoll, Q. Jia, H. Wang, J. Appl. Phys. 109, 054302 (2011).

    Article  Google Scholar 

  26. S.M. Wu, S.A. Cybart, D. Yi, J.M. Parker, R. Ramesh, R.C. Dynes, Phys. Rev. Lett. 110, 067202 (2013).

    Article  CAS  Google Scholar 

  27. W. Zhang, L. Li, P. Lu, Q. Su, M. Fan, F. Khatkhatay, A. Chen, Q.X. Jia, X. Zhang, J.L. MacManus-Driscoll, H. Wang, ACS Appl. Mater. Interfaces (2015), doi:10.1021/acsami.5b06314 (2015).

  28. A. Chen, M. Weigand, Z. Bi, W. Zhang, X. Lu, P. Dowden, J.L. MacManus-Driscoll, H. Wang, Q. Jia, Sci. Rep. 4, 5426 (2014).

    Article  CAS  Google Scholar 

  29. A. Chen, W. Zhang, F. Khatkatay, Q. Su, C.-F. Tsai, L. Chen, Q.X. Jia, J.L. MacManus-Driscoll, H. Wang, Appl. Phys. Lett. 102, 093114 (2013).

    Article  Google Scholar 

  30. J.L. MacManus-Driscoll, P. Zerrer, H. Wang, H. Yang, J. Yoon, A. Fouchet, R. Yu, M.G. Blamire, Q. Jia, Nat. Mater. 7, 314 (2008).

    Article  CAS  Google Scholar 

  31. A.K. Pradhan, D. Hunter, T. Williams, B. Lasley-Hunter, R. Bah, H. Mustafa, R. Rakhimov, J. Zhang, D.J. Sellmyer, E.E. Carpenter, D.R. Sahu, J.L. Huang, J. Appl. Phys. 103, 023914 (2008).

    Article  Google Scholar 

  32. S. Maletic, D. Popovic, J. Dojcilovic, J. Alloys Compd. 496, 388 (2010).

    Article  CAS  Google Scholar 

  33. S.B. Lee, A. Sangle, P. Lu, A. Chen, W. Zhang, J.S. Lee, H. Wang, Q. Jia, J.L. MacManus-Driscoll, Adv. Mater. 26, 6284 (2014).

    Article  CAS  Google Scholar 

  34. S.M. Yang, S.B. Lee, J. Jian, W. Zhang, Q.X. Jia, H. Wang, T.W. Noh, S.V. Kalinin, J.L. MacManus-Driscoll, Nat. Commun. 6, 8588 (2015).

    Article  CAS  Google Scholar 

  35. E. Weal, S. Patnaik, Z. Bi, H. Wang, T. Fix, A. Kursumovic, J.L. MacManus-Driscoll, Appl. Phys. Lett. 97, 153121 (2010).

    Article  Google Scholar 

  36. E.-M. Choi, E. Weal, Z. Bi, H. Wang, A. Kursumovic, T. Fix, M.G. Blamire, J.L. MacManus-Driscoll, Appl. Phys. Lett. 102, 012905 (2013).

    Article  Google Scholar 

  37. S.M. Wu, S.A. Cybart, P. Yu, M.D. Rossell, J.X. Zhang, R. Ramesh, R.C. Dynes, Nat. Mater. 9, 756 (2010).

    Article  CAS  Google Scholar 

  38. Q. Xu, Y. Sheng, X. Xue, X. Yuan, Z. Wen, J. Du, Jpn. J. Appl. Phys. 53, 08nm01 (2014).

    Article  Google Scholar 

  39. N.M. Aimon, D.H. Kim, X. Sun, C.A. Ross, ACS Appl. Mater. Interfaces 7, 2263 (2015).

    Article  CAS  Google Scholar 

  40. M.P. Stoykovich, P.F. Nealey, Mater. Today 9, 20 (2006).

    Article  CAS  Google Scholar 

  41. Y. Takamura, R.V. Chopdekar, E. Arenholz, Y. Suzuki, Appl. Phys. Lett. 92, 162504 (2008).

    Article  Google Scholar 

  42. J.L. MacManus-Driscoll, A. Suwardi, A. Kursumovic, Z. Bi, C.F. Tsai, H. Wang, Q.X. Jia, O.J. Lee, APL Mater. 3, 062507 (2015).

    Article  Google Scholar 

  43. A. Kursumovic, E. Defay, O.J. Lee, C.-F. Tsai, Z. Bi, H. Wang, J.L. MacManus-Driscoll, Adv. Funct. Mater. 23, 5881 (2013).

    Article  CAS  Google Scholar 

  44. O. Lee, S.A. Harrington, A. Kursumovic, E. Defay, H. Wang, Z. Bi, C.-F. Tsai, L. Yan, Q. Jia, J.L. MacManus-Driscoll, Nano Lett. 12, 4311 (2012).

    Article  CAS  Google Scholar 

  45. M. Alexe, D. Hesse, V. Schmidt, S. Senz, H.J. Fan, M. Zacharias, U. Goesele, Appl. Phys. Lett. 89, 172907 (2006).

    Article  Google Scholar 

  46. G.Y. Jing, H.L. Duan, X.M. Sun, Z.S. Zhang, J. Xu, Y.D. Li, J.X. Wang, D.P. Yu, Phys. Rev. B Condens. Matter 73, 235409 (2006).

    Article  Google Scholar 

  47. S.B. Lee, W. Zhang, F. Khatkatay, Q.X. Jia, H. Wang, J.L. MacManus-Driscoll, Adv. Funct. Mater. 25 (27), 4328 (2015).

    Article  CAS  Google Scholar 

  48. S.B. Lee, W. Zhang, F. Khatkatay, H. Wang, Q.X. Jia, J.L. MacManus-Driscoll, Nano Lett. (2015), doi: 10.1021/acs.nanolett.5b02726.

  49. J. Jeong, N. Aetukuri, T. Graf, T.D. Schladt, M.G. Samant, S.S.P. Parkin, Science 339, 1402 (2013).

    Article  CAS  Google Scholar 

  50. K.-H. Kim, S. Gaba, D. Wheeler, J.M. Cruz-Albrecht, T. Hussain, N. Srinivasa, W L u Nano Lett. 12, 389 (2012).

    Article  CAS  Google Scholar 

Download references

Acknowledgments

J.L.M.-D. gratefully acknowledges support of the European Research Council (ERC-2009-AdG 247276 NOVOX) and the Leverhulme Trust (grant RPG-2015-017). H.W. gratefully acknowledges the support from the US National Science Foundation (DMR-1007969, DMR-1401266, and DMR-0846504). A.S. acknowledges funding from the A* PhD program in Singapore. We acknowledge the assistance of Shin Buhm Lee, Abhijeet Sangle, Eun-Mi Choi, Aiping Chen, Wenrui Zhang, Ping Lu, and Ahmed Kursumovic, for provision of some of the data for, or modification to, the figures.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mac Manus-Driscoll, J.L., Suwardi, A. & Wang, H. Composite epitaxial thin films: A new platform for tuning, probing, and exploiting mesoscale oxides. MRS Bulletin 40, 933–942 (2015). https://doi.org/10.1557/mrs.2015.258

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/mrs.2015.258

Navigation