Skip to main content
Log in

Structural nanocomposites for aerospace applications

  • Engineered Nanomaterials in Aerospace
  • Published:
MRS Bulletin Aims and scope Submit manuscript

Abstract

Carbon nanotubes (CNTs) have captured the imagination of the research community because of their many superior properties. In the nearly 25 years since their novelty was recognized, however, progress toward their utility as superlightweight structural materials, especially for aerospace applications, has been disappointing. Recent advancements have revived some of the anticipation for the touted systems payoffs. The purpose of this article is to examine how close CNTs have come to fulfilling expectations for lightweight aerospace structures in the two decades since the initial report stimulated intense interest in this material. This article also proposes areas of study to bridge knowledge gaps that can realize the potential for these CNT composites to be part of the lightweight structures technology suite for aerospace use.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. C.E. Harris, J.H. Starnes Jr., M.J. Shuart, J. Aircraft 39, 545 (2002).

    Google Scholar 

  2. J. Hale, AERO (Qtr. 4), 16–23 (2006), available at http://www.boeing.com/commercial/aeromagazine/articles/qtr_4_06/AERO_Q406.pdf (accessed August 2015).

    Google Scholar 

  3. Airbus, “Passenger Aircraft/A350 XWB/Technology,” http://www.airbus.com/aircraftfamilies/passengeraircraft/a350xwbfamily/technology-and-innovation/ (accessed April 2015).

  4. J. Fenn, M. Raskino, Mastering the Hype Cycle: How to Choose the Right Innovation at the Right Time (Harvard Business Review Press, Boston, 2008).

    Google Scholar 

  5. M. Endo, R. Saito, M.S. Dresselhaus, G. Dresselhaus, in Carbon Nanotubes: Preparation and Properties, T.W. Ebbesen, Ed. (CRC Press, Boca Raton, FL, 1997), chap. 2, pp. 35–110.

    Google Scholar 

  6. C.E. Harris, M.J. Shuart, H.R. Gray, “A Survey of Emerging Materials for Revolutionary Aerospace Vehicle Structures and Propulsion Systems” (Report NASA/ TM-2002-211664, NASA, Hampton, VA, 2002).

  7. S. Iijima, Nature 354, 56 (1991).

    CAS  Google Scholar 

  8. M.C. Roco, J. Nanopart. Res. 13, 427 (2011).

    Google Scholar 

  9. M.S. Dresselhaus, G. Dresselhaus, R. Saito, in Carbon Nanotubes, M. Endo, S. Iijima, M.S. Dresselhaus, Eds. (Elsevier Science, London, 1996), pp. 27–35.

    Google Scholar 

  10. E.T. Thostenson, Z. Ren, T.-W. Chou, Compos. Sci. Technol. 61, 1899 (2001).

    CAS  Google Scholar 

  11. G.M. Odegard, T.S. Gates, K.E. Wise, C. Park, E.J. Siochi, Compos. Sci. Technol. 63, 1671 (2003).

    CAS  Google Scholar 

  12. C. Park, Z. Ounaies, K.A. Watson, R.E. Crooks, J. Smith Jr., S.E. Lowther, J.W. Connell, E.J. Siochi, J.S. Harrison, T.L. St. Clair, Chem. Phys. Lett. 364, 303 (2002).

    CAS  Google Scholar 

  13. K.E. Wise, C. Park, E.J. Siochi, J.S. Harrison, Chem. Phys. Lett. 391, 207 (2004).

    CAS  Google Scholar 

  14. L. Qu, Y. Lin, D.E. Hill, B. Zhou, W. Wang, X. Sun, A. Kitaygorodskiy, M. Suarez, J.W. Connell, L.F. Allard, Y.-P. Sun, Macromolecules 37, 6055 (2004).

    CAS  Google Scholar 

  15. D.M. Delozier, K.A. Watson, J.G. Smith Jr., T.C. Clancy, J.W. Connell, Macromolecules 39, 1731 (2006).

    CAS  Google Scholar 

  16. E.T. Thostenson, T.-W. Chou, Carbon 44, 3022 (2006).

    CAS  Google Scholar 

  17. J.B. Bai, L. Ci, Compos. Sci. Technol. 66, 599 (2006).

    Google Scholar 

  18. B. Fiedler, F.H. Gojny, M.H.G. Wichmann, C.M. Mathias, K. Schulte, Compos. Sci. Technol. 66, 3115 (2006).

    CAS  Google Scholar 

  19. A. Gu, G. Liang, D. Liang, M. Ni, Polym. Adv. Technol. 18, 835 (2007).

    CAS  Google Scholar 

  20. A. Gordon, M. Ruether, F. Blighe, W. Blau, Polym. Int. 58, 1002 (2009).

    Google Scholar 

  21. P.-C. Ma, N.A. Siddiqui, G. Marom, J.-K. Kim, Compos. Part A Appl. Sci. Manuf. 41, 1345 (2010).

    Google Scholar 

  22. V.I. Irzhak, Russ. Chem. Rev. 80, 787 (2011).

    CAS  Google Scholar 

  23. S.K. Pillai, S. Suprakas, in Advances in Nanocomposites—Synthesis, Characterization and Industrial Applications, B. Reddy, Ed. (InTech, Rijeka, Croatia, 2011), chap. 32, pp. 727–792.

    Google Scholar 

  24. J.W. Guan, B. Ashrafi, Y. Martinez-Rubi, Y. Zhang, C.T. Kingston, A. Johnston, B. Simard, Polym. Polym. Compos. 19, 99 (2011).

    CAS  Google Scholar 

  25. X. Jia, Q. Zhang, M.-Q. Zhao, G.-H. Xu, J.-Q. Huang, W. Qian, Y. Lu F. Wei J. Mater. Chem. 22, 7050 (2012).

    CAS  Google Scholar 

  26. S. Aldajan, Y. Haik, Mater. Des. 34, 379 (2012).

    Google Scholar 

  27. J.S. Tate, S. Gaikwad, N. Theodoropoulou, E. Trevino, J.H. Koo, J. Compos. 2013, 403656 (2013).

    Google Scholar 

  28. Y.-M. Jen, C.-Y. Huang, J. Compos. Mater. 48, 3469 (2014).

    CAS  Google Scholar 

  29. M. Gurau, “Part 2: The World’s First Commercial All-CNT Sheets, Tape and Yarns,” Nanocomp Technologies Blog, April 17, 2014, http://www.nanocomptech.com/blog.

  30. R.J. Mora, J.J. Vilatela, A.H. Windle, Compos. Sci. Technol. 69, 1558 (2009).

    CAS  Google Scholar 

  31. General Nano LLC, “Products” (2014); http://www.generalnanolic.com/products (accessed August 25, 2015).

  32. N12 Technologies, “N12 Products” (August 2015); http://www.n12technologies.com/?page_id=5.

  33. W. Cho, M. Schulz, V. Shanov, Carbon 72, 264 (2014).

    CAS  Google Scholar 

  34. N. Behabtu, C.C. Young, D.E. Tsentalovich, O. Kleinerman, X. Wang, A.W.K. Ma, E.A. Bengio, R.F. ter Waarbeek, J.J. de Jong, R.E. Hoogerwerf, S.B. Fairchild, J.B. Ferguson, B. Maruyama, J. Kono, Y. Talmon, Y. Cohen, M.J. Otto, M. Pasquali, Science 339, 182 (2013).

    CAS  Google Scholar 

  35. Z. Wang, Z. Liang, B. Wang, C. Zhang, L. Kramer, Compos. Part A Appl. Sci. Manuf. 35, 1225 (2004).

    Google Scholar 

  36. M.B. Jakubinek, B. Ashrafi, J. Guan, M.B. Johnson, M.A. White, B. Simard, RSC Adv. 4, 75764 (2014).

    Google Scholar 

  37. M.F.L. De Volder, S.H. Tawfick, R.H. Baughman, A.J. Hart, Science 339, 535 (2013).

    Google Scholar 

  38. Y. Lin, J.-W. Kim, J.W. Connell, M. Lebrón-Colón, E.J. Siochi, Adv. Eng. Mater. 17, 674 (2015).

    CAS  Google Scholar 

  39. J.-W. Kim, E.J. Siochi, J. Carpena-Núñez, K.E. Wise, J.W. Connell, Y. Lin, R.A. Wincheski, ACS Appl. Mater. Interfaces 5, 8597 (2013).

    CAS  Google Scholar 

  40. J.-W. Kim, G. Sauti, E.J. Siochi, J.G. Smith, R.A. Wincheski, R.J. Cano J.W. Connell, K.E. Wise, ACS Appl. Mater. Interfaces 6, 18832 (2014).

    CAS  Google Scholar 

  41. R.J. Cano, B.W. Grimsley, M.W. Czabaj, B.T. Hull, E.J. Siochi, “Processing and Characterization of Carbon Nanotube Composites,” presented at SAMPE Tech 2014, Seattle, June 2–5, 2014.

  42. Q. Cheng, J. Bao, J.G. Park, Z. Liang, C. Zhang, B. Wang, Adv. Funct. Mater. 19, 3219 (2009).

    CAS  Google Scholar 

  43. R.S. Downes, S. Wang, D. Haldane, A. Moench, R. Liang, Adv. Eng. Mater. 17, 349 (2015).

    CAS  Google Scholar 

  44. Q. Cheng, B. Wang, C. Zhang, Z. Liang, Small 6, 763 (2010).

    CAS  Google Scholar 

  45. “HexPly® 8552 Product Data” (Publication FTA 072e, Hexcel Composites, Stamford, CT, February 2013).

  46. B.L. Wardle, D.S. Saito, E.J. Garcia, A.J. Hart, R.G. deVilloria, E.A. Verploegen Adv. Mater. 20, 2655 (2008).

    Google Scholar 

  47. H. Cebeci, R.G. de Villoria, A.J. Hart, B.L. Wardle, Compos. Sci. Technol. 69, 2649 (2009).

    CAS  Google Scholar 

  48. K. Sahin, M.A. Fasanella, I. Chasiotis, K.M. Lions, B.A. Newcomb, M.G. Kamath, H.G. Chae, S. Kumar, Carbon 77, 442 (2014).

    CAS  Google Scholar 

  49. Y. Liu, S. Kumar, ACS Appl. Mater. Interfaces 6, 6069 (2014).

    CAS  Google Scholar 

  50. K. Koziol, J. Vilatela, A. Moisala, M. Motta, P. Cunniff, M. Sennett, A. Windle, Science 318, 1892 (2007).

    CAS  Google Scholar 

  51. K. Jiang, Q. Li, S. Fan, Nature 419, 801 (2002).

    CAS  Google Scholar 

  52. M. Zhang, K.R. Atkinson, R.H. Baughman, Science 306, 1358 (2004).

    CAS  Google Scholar 

  53. NT. Alvarez, P. Miller, M. Haase, N. Kienzle, L. Zhang, M.J. Schulz, V. Shanov, Carbon 86, 350 (2015).

    CAS  Google Scholar 

  54. H. Kim, Met. Mater. Int. 21, 185 (2015).

    Google Scholar 

  55. S.S. Wicks, W. Wang, M.R. Williams, B.L. Wardle, Compos. Sci. Technol. 100, 128 (2014).

    CAS  Google Scholar 

  56. E.J. Garcia, B.L. Wardle, A.J. Hart, M. Yamamoto, Compos. Sci. Technol. 68, 2034 (2008).

    CAS  Google Scholar 

  57. S.A. Steiner III, R. Li, B.L. Wardle, ACS Appl. Mater. Interfaces 5, 4892 (2013).

    CAS  Google Scholar 

  58. E.J. Garcia, B.L. Wardle, A.J. Hart, Compos. Part A Appl. Sci. Manuf. 39, 1065 (2008).

    Google Scholar 

  59. K.L. Kepple, G.P. Sangorn, P.A. Lacasse, K.M. Gruenberg, W.J. Ready, Carbon 46, 2026 (2008).

    CAS  Google Scholar 

  60. F.N. Nguyen, S. Tun, A. Haro, K. Yoshioka, N. Hirano, R. Ovalle-Robles, “Hybridization of Interlaminar Reinforcements in Carbon Fiber Reinforced Polymer Composite,” presented at SAMPE Tech 2013, Wichita, KS, October 21–24, 2013.

  61. S.T. Tun, K. Yoshioka, F.N. Nguyen, “Out-of-Plane Property Improvements by Hybridization of Interlaminar Reinforcements in CFRP,” presented at SAMPE Tech 2014, Seattle, June 2–5, 2014.

  62. C.E. Harris, J.H. Starnes Jr., M.J. Shuart, “An Assessment of the State-of-the-Art in the Design and Manufacturing of Large Composite Structures for Aerospace Vehicles” (Report, NASA/TM-2001-210844, NASA, Hampton, VA, 2001).

  63. M.J. Hinton, PD. Soden, Compos. Sci. Technol. 58, 1001 (1998).

    Google Scholar 

  64. P.D. Soden, A.S. Kaddour, M.J. Hinton, Compos. Sci. Technol. 64, 589 (2004).

    Google Scholar 

  65. M.J. Hinton, A.S. Kaddour, J. Compos. Mater. 47, 653 (2012).

    Google Scholar 

  66. M. Karal, “AST Composite Wing Program—Executive Summary” (Report NASA/CR-2001-210650, NASA, Hampton, VA, 2001).

  67. E.J. Siochi, J.W. Kim, G. Sauti, R.J. Cano, R.A. Wincheski, J.G. Ragcliffe, M. Czabaj, B.D. Jensen, K.E. Wise, “High Volume Fraction Carbon Nanotube Composites for Aerospace Applications,” to be presented at CAMX 2015, Dallas, TX, October 27–29, 2015.

Download references

Acknowledgments

We acknowledge Drs. Kristopher Wise, Stephen Scotti, James Ratcliffe, and Richard Wahls for insightful discussions that helped inform the content of this article.

The use of trademarks or names of manufacturers in this report is for accurate reporting and does not constitute an official endorsement, either expressed or implied, of such products or manufacturers by NASA.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Siochi, E.J., Harrison, J.S. Structural nanocomposites for aerospace applications. MRS Bulletin 40, 829–835 (2015). https://doi.org/10.1557/mrs.2015.228

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/mrs.2015.228

Navigation