Skip to main content
Log in

Nanocomposites for thermoelectrics and thermal engineering

  • Obtaining Ultimate Functionalities in Nanocomposites
  • Published:
MRS Bulletin Aims and scope Submit manuscript

Abstract

The making of composites has served as a working principle of achieving material properties beyond those of their homogeneous counterparts. The classical effective-medium theory models the constituent phases with local properties drawn from the corresponding bulk values, whose applicability becomes questionable when the characteristic size of individual domains in a composite shrinks to nanometer scale, and the interactions between domains induced by interfacial and size effects become important or even dominant. These unique features of nanocomposites have enabled engineering of extraordinary thermoelectric materials with synergistic effects among their constituents in recent years. For other applications requiring high thermal conductivity, however, interfacial and size effects on thermal transport in nanocomposites are not favorable, although certain practical applications often call for the composite approach. Therefore, understanding nanoscale transport in nanocomposites can help determine appropriate strategies for enhancing the thermal performance for different applications. We review the emerging principles of heat and charge transport in nanocomposites and provide working examples from both thermoelectrics and general thermal engineering.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. S. Chu, A. Majumdar, Nature 488, 294 (2012).

    CAS  Google Scholar 

  2. T.M. Tritt, M.A. Subramanian, MRS Bull. 31, 188 (2006).

    Google Scholar 

  3. T.M. Tritt, H. Böttner, L. Chen, MRS Bull. 33, 366 (2008).

    CAS  Google Scholar 

  4. L.E. Bell, Science 321, 1457 (2008).

    CAS  Google Scholar 

  5. M. Zebarjadi, K. Esfarjani, M.S. Dresselhaus, Z.F. Ren, G. Chen, Energy Environ. Sci. 5, 5147 (2012).

    Google Scholar 

  6. M.S. Dresselhaus, G. Chen, M.Y. Tang, R.G. Yang, H. Lee, D.Z. Wang, Z.F. Ren, J.-P. Fleurial, P. Gogna, Adv. Mater. 19, 1043 (2007).

    CAS  Google Scholar 

  7. H.J. Goldsmid, Introduction to Thermoelectricity (Springer, New York, 2010).

    Google Scholar 

  8. Lord Rayleigh, Philos. Mag. 34, 481 (1892).

    Google Scholar 

  9. J.C. Maxwell, A Treatise on Electricity and Magnetism (Clarendon, Oxford, UK, 1873), vol. 1.

    Google Scholar 

  10. J.C. Maxwell Garnett, Philos. Trans. R. Soc. Lond. Math. Phys. Eng. Sci. 203, 385 (1904).

    CAS  Google Scholar 

  11. S. Datta, Electronic Transport in Mesoscopic Systems (Cambridge University Press, Cambridge, UK, 1997).

    Google Scholar 

  12. G. Chen, Nanoscale Energy Transport and Conversion: A Parallel Treatment of Electrons, Molecules, Phonons, and Photons (Oxford University Press, Oxford; New York, 2005).

    Google Scholar 

  13. C.-W. Nan, R. Birringer, D.R. Clarke, H. Gleiter, J. Appl. Phys. 81, 6692 (1997).

    CAS  Google Scholar 

  14. C. Herring, J. Appl. Phys. 31, 1939 (1960).

    Google Scholar 

  15. D.J. Bergman, O. Levy, J. Appl. Phys. 70, 6821 (1991).

    Google Scholar 

  16. D. Fu, A.X. Levander, R. Zhang, J.W. Ager, J. Wu, Phys. Rev. B 84, 045205 (2011).

    Google Scholar 

  17. B. Poudel, Q. Hao, Y. Ma, Y. Lan, A. Minnich, B. Yu, X. Yan, D. Wang, A. Muto, D. Vashaee, X. Chen, J. Liu, M.S. Dresselhaus, G. Chen, Z. Ren, Science 320, 634 (2008).

    CAS  Google Scholar 

  18. Y. Pei, X. Shi, A. LaLonde, H. Wang, L. Chen, G.J. Snyder, Nature 473, 66 (2011).

    CAS  Google Scholar 

  19. K. Biswas, J. He, I.D. Blum, C.-I. Wu, T.P. Hogan, D.N. Seidman, V.P. Dravid, M.G. Kanatzidis, Nature 489, 414 (2012).

    CAS  Google Scholar 

  20. J.P. Heremans, M.S. Dresselhaus, L.E. Bell, D.T. Morelli, Nat. Nanotechnol. 8, 471 (2013).

    CAS  Google Scholar 

  21. H.J. Wu, L.-D. Zhao, F.S. Zheng, D. Wu, Y.L. Pei, X. Tong, M.G. Kanatzidis, J.Q. He, Nat. Commun. 5, 5515 (2014).

    Google Scholar 

  22. H. Daembkes, Ed., Modulation-Doped Field-Effect Transistors: Principles, Design and Technology (IEEE Press, New York, 1990).

    Google Scholar 

  23. M. Zebarjadi, G. Joshi, G. Zhu, B. Yu, A. Minnich, Y. Lan, X. Wang, M. Dresselhaus, Z. Ren, G. Chen, Nano Lett. 11, 2225 (2011).

    CAS  Google Scholar 

  24. B. Yu, M. Zebarjadi, H. Wang, K. Lukas, H. Wang, D. Wang, C. Opeil, M. Dresselhaus, G. Chen, Z. Ren, Nano Lett. 12, 2077 (2012).

    CAS  Google Scholar 

  25. G.D. Mahan, J.O. Sofo, Proc. Natl. Acad. Sci. U.S.A. 93, 7436 (1996).

    CAS  Google Scholar 

  26. M. Lundstrom, Fundamentals of Carrier Transport (Cambridge University Press, New York, 2009).

    Google Scholar 

  27. C.F. Bohren, D.R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley-VCH, New York, 1998).

    Google Scholar 

  28. L.I. Schiff, Quantum Mechanics (McGraw-Hill College, New York, 1968).

    Google Scholar 

  29. M. Zebarjadi, K. Esfarjani, A. Shakouri, J.-H. Bahk, Z. Bian, G. Zeng, J. Bowers, H. Lu, J. Zide, A. Gossard, Appl. Phys. Lett. 94, 202105 (2009).

    Google Scholar 

  30. J.-H. Bahk, P. Santhanam, Z. Bian, R. Ram, A. Shakouri, Appl. Phys. Lett. 100, 012102 (2012).

    Google Scholar 

  31. B. Liao, M. Zebarjadi, K. Esfarjani, G. Chen, Phys. Rev. Lett. 109, 126806 (2012).

    Google Scholar 

  32. M. Zebarjadi, B. Liao, K. Esfarjani, M. Dresselhaus, G. Chen, Adv. Mater. 25, 1577 (2013).

    CAS  Google Scholar 

  33. W. Shen, T. Tian, B. Liao, M. Zebarjadi, Phys. Rev. B 90, 075301 (2014).

    Google Scholar 

  34. B. Liao, M. Zebarjadi, K. Esfarjani, G. Chen, Phys. Rev. B. 88, 155432 (2013).

    Google Scholar 

  35. L.D. Hicks, M.S. Dresselhaus, Phys. Rev. B 47, 12727 (1993).

    CAS  Google Scholar 

  36. L.D. Hicks, M.S. Dresselhaus, Phys. Rev. B 47, 16631 (1993).

    CAS  Google Scholar 

  37. T.C. Harman, P.J. Taylor, M.P. Walsh, B.E. LaForge, Science 297, 2229 (2002).

    CAS  Google Scholar 

  38. L.D. Hicks, T.C. Harman, X. Sun, M.S. Dresselhaus, Phys. Rev. B 53, R10493 (1996).

    CAS  Google Scholar 

  39. R. Venkatasubramanian, E. Siivola, T. Colpitts, B. O’Quinn, Nature 413, 597 (2001).

    CAS  Google Scholar 

  40. I. Chowdhury, R. Prasher, K. Lofgreen, G. Chrysler, S. Narasimhan, R. Mahajan, D. Koester, R. Alley, R. Venkatasubramanian, Nat. Nanotechnol. 4, 235 (2009).

    CAS  Google Scholar 

  41. A.I. Boukai, Y. Bunimovich, J. Tahir-Kheli, J.-K. Yu, W.A. Goddard Iii, J.R. Heath, Nature 451, 168 (2008).

    CAS  Google Scholar 

  42. H. Ohta, S. Kim, Y. Mune, T. Mizoguchi, K. Nomura, S. Ohta, T. Nomura, Y. Nakanishi, Y. Ikuhara, M. Hirano, H. Hosono, K. Koumoto, Nat. Mater. 6, 129 (2007).

    CAS  Google Scholar 

  43. H.B.G. Casimir, Physica 5, 495 (1938).

    Google Scholar 

  44. G. Chen, C.L. Tien, X. Wu, J.S. Smith, J. Heat Transf. 116, 325 (1994).

    CAS  Google Scholar 

  45. S.-M. Lee, D.G. Cahill, R. Venkatasubramanian, Appl. Phys. Lett. 70, 2957 (1997).

    CAS  Google Scholar 

  46. T. Borca-Tasciuc, W. Liu, J. Liu, T. Zeng, D.W. Song, C.D. Moore, G. Chen, K.L. Wang, M.S. Goorsky, T. Radetic, R. Gronsky, T. Koga, M.S. Dresselhaus, Superlattices Microstruct. 28, 199 (2000).

    CAS  Google Scholar 

  47. W.S. Capinski, H.J. Maris, T. Ruf, M. Cardona, K. Ploog, D.S. Katzer, Phys. Rev. B 59, 8105 (1999).

    CAS  Google Scholar 

  48. G. Chen, J. Heat Transf. 119, 220 (1997).

    CAS  Google Scholar 

  49. G. Chen, Phys. Rev. B 57, 14958 (1998).

    CAS  Google Scholar 

  50. J. Garg, G. Chen, Phys. Rev. B 87, 140302 (2013).

    Google Scholar 

  51. A.J. Minnich, M.S. Dresselhaus, Z.F. Ren, G. Chen, Energy Environ. Sci. 2, 466 (2009).

    CAS  Google Scholar 

  52. Y. Lan, A.J. Minnich, G. Chen, Z. Ren, Adv. Funct. Mater. 20, 357 (2010).

    CAS  Google Scholar 

  53. W. Liu, X. Yan, G. Chen, Z. Ren, Nano Energy 1, 42 (2012).

    CAS  Google Scholar 

  54. S.I. Kim, K.H. Lee, H.A. Mun, H.S. Kim, S.W. Hwang, J.W. Roh, D.J. Yang, W.H. Shin, X.S. Li, Y.H. Lee, G.J. Snyder, S.W. Kim, Science 348, 109 (2015).

    CAS  Google Scholar 

  55. K.F. Hsu, S. Loo, F. Guo, W. Chen, J.S. Dyck, C. Uher, T. Hogan E.K. Polychroniadis, M.G. Kanatzidis, Science 303, 818 (2004).

    CAS  Google Scholar 

  56. M. Zhou, J.-F. Li, T. Kita, J. Am. Chem. Soc. 130, 4527 (2008).

    CAS  Google Scholar 

  57. Z.-Y. Li, J.-F. Li, Adv. Energy Mater. 4, 1300937 (2014).

    Google Scholar 

  58. E. Quarez, K.-F. Hsu, R. Pcionek, N. Frangis, E.K. Polychroniadis, M.G. Kanatzidis, J. Am. Chem. Soc. 127, 9177 (2005).

    CAS  Google Scholar 

  59. K. Biswas, J. He, Q. Zhang, G. Wang, C. Uher, V.P. Dravid, M.G. Kanatzidis, Nat. Chem. 3, 160 (2011).

    CAS  Google Scholar 

  60. Y. Wang, K.H. Lee, H. Ohta, K. Koumoto, J. Appl. Phys. 105, 103701 (2009).

    Google Scholar 

  61. C. Wan, X. Gu, F. Dang, T. Itoh, Y. Wang, H. Sasaki, M. Kondo, K. Koga, K. Yabuki, J. Snyder, R. Yang, K. Kuomoto, Nat. Mater. 14, 622 (2015).

    CAS  Google Scholar 

  62. D.A. Broido, M. Malorny, G. Birner, N. Mingo, D.A. Stewart, Appl. Phys. Lett. 91, 231922 (2007).

    Google Scholar 

  63. K. Esfarjani, G. Chen, H.T. Stokes, Phys. Rev. B 84, 085204 (2011).

    Google Scholar 

  64. Z. Tian, J. Garg, K. Esfarjani, T. Shiga, J. Shiomi, G. Chen, Phys. Rev. B 85, 184303 (2012).

    Google Scholar 

  65. T. Luo, J. Garg, J. Shiomi, K. Esfarjani, G. Chen, Europhys. Lett. 101, 16001 (2013).

    Google Scholar 

  66. B. Liao, S. Lee, K. Esfarjani, G. Chen, Phys. Rev. B 89, 035108 (2014).

    Google Scholar 

  67. S. Lee, K. Esfarjani, J. Mendoza, M.S. Dresselhaus, G. Chen, Phys. Rev. B 89, 085206 (2014).

    Google Scholar 

  68. Z. Tian, S. Lee, G. Chen, J. Heat Transf. 135, 061605 (2013).

    Google Scholar 

  69. B. Qiu, Z. Tian, A. Vallabhaneni, B. Liao, J.M. Mendoza, O.D. Restrepo, X. Ruan, G. Chen, Europhys. Lett. 109, 57006 (2015).

    Google Scholar 

  70. B. Liao, J. Zhou, B. Qiu, M.S. Dresselhaus, G. Chen, Phys. Rev. B 91, 235419 (2015).

    Google Scholar 

  71. G.A. Slack, in Solid State Physics, H. Ehrenreich, F. Seitz, D. Turnbull, Eds. (Academic Press, New York, 1979), vol. 34, pp. 1–71.

    Google Scholar 

  72. D.G. Cahill, R.O. Pohl, Annu. Rev. Phys. Chem. 39, 93 (1988).

    CAS  Google Scholar 

  73. G. Chen, in Semiconductors and Semimetals, T.M. Tritt, Ed. (Elsevier, 2001), vol. 71 of Recent Trends in Thermoelectric Materials Research III, pp. 203–259.

  74. C. Chiritescu, D.G. Cahill, N. Nguyen, D. Johnson, A. Bodapati, P. Keblinski, P. Zschack, Science 315, 351 (2007).

    CAS  Google Scholar 

  75. J. Ma, B.R. Parajuli, M.G. Ghossoub, A. Mihi, J. Sadhu, P.V. Braun, S. Sinha, Nano Lett. 13, 618 (2013).

    CAS  Google Scholar 

  76. N. Zen, T.A. Puurtinen, T.J. Isotalo, S. Chaudhuri, I.J. Maasilta, Nat. Commun. 5, 4435 (2014).

    Google Scholar 

  77. J.-K. Yu, S. Mitrovic, D. Tham, J. Varghese, J.R. Heath, Nat. Nanotechnol. 5, 718 (2010).

    CAS  Google Scholar 

  78. P.E. Hopkins, C.M. Reinke, M.F. Su, R.H. Olsson, E.A. Shaner, Z.C. Leseman, J.R. Serrano, L.M. Phinney, I. El-Kady, Nano Lett. 11, 107 (2011).

    CAS  Google Scholar 

  79. L. Yang, N. Yang, B. Li, Nano Lett. 14, 1734 (2014).

    CAS  Google Scholar 

  80. N. Li, J. Ren, L. Wang, G. Zhang, P. Hänggi, B. Li, Rev. Mod. Phys. 84, 1045 (2012).

    Google Scholar 

  81. M. Maldovan, Nature 503, 209 (2013).

    CAS  Google Scholar 

  82. T. Gorishnyy, C.K. Ullal, M. Maldovan, G. Fytas, E.L. Thomas, Phys. Rev. Lett. 94, 115501 (2005).

    CAS  Google Scholar 

  83. W. Cheng, J. Wang, U. Jonas, G. Fytas, N. Stefanou, Nat. Mater. 5, 830 (2006).

    CAS  Google Scholar 

  84. G. Zhu, N.Z. Swinteck, S. Wu, J.S. Zhang, H. Pan, J.D. Bass, P.A. Deymier, D. Banerjee, K. Yano, Phys. Rev. B 88, 144307 (2013).

    Google Scholar 

  85. M.N. Luckyanova, J. Garg, K. Esfarjani, A. Jandl, M.T. Bulsara, A.J. Schmidt, A.J. Minnich, S. Chen, M.S. Dresselhaus, Z. Ren, E.A. Fitzgerald, G. Chen, Science 338, 936 (2012).

    CAS  Google Scholar 

  86. Z. Tian, K. Esfarjani, G. Chen, Phys. Rev. B 89, 235307 (2014).

    Google Scholar 

  87. C. Dames, G. Chen, J. Appl. Phys. 95, 682 (2004).

    CAS  Google Scholar 

  88. Y. Chalopin, K. Esfarjani, A. Henry, S. Volz, G. Chen, Phys. Rev. B 85, 195302 (2012).

    Google Scholar 

  89. P. Sheng, Introduction to Wave Scattering, Localization, and Mesoscopic Phenomena (Academic Press, San Diego, 1995).

    Google Scholar 

  90. R. Prasher, Proc. IEEE 94, 1571 (2006).

    CAS  Google Scholar 

  91. C.P. Wong, R.S. Bollampally, J. Appl. Polym. Sci. 74, 3396 (1999).

    CAS  Google Scholar 

  92. Y.P. Mamunya, V.V. Davydenko, P. Pissis, E.V. Lebedev, Eur. Polym. J. 38, 1887 (2002).

    CAS  Google Scholar 

  93. Z. Han, A. Fina, Prog. Polym. Sci. 36, 914 (2011).

    CAS  Google Scholar 

  94. S. Shen, A. Henry, J. Tong, R. Zheng, G. Chen, Nat. Nanotechnol. 5, 251 (2010).

    CAS  Google Scholar 

  95. V. Singh, T.L. Bougher, A. Weathers, Y. Cai, K. Bi, M.T. Pettes, S.A. McMenamin, W. Lv, D.P. Resler, T.R. Gattuso, D.H. Altman, K.H. Sandhage, L. Shi, A. Henry, B.A. Cola, Nat. Nanotechnol. 9, 384 (2014).

    CAS  Google Scholar 

  96. G.-H. Kim, D. Lee, A. Shanker, L. Shao, M.S. Kwon, D. Gidley, J. Kim, K.P. Pipe, Nat. Mater. 14, 295 (2015).

    CAS  Google Scholar 

  97. S. Kirkpatrick, Rev. Mod. Phys. 45, 574 (1973).

    Google Scholar 

  98. J.J. Wang, R.T. Zheng, J.W. Gao, G. Chen, Nano Today 7, 124 (2012).

    Google Scholar 

  99. R. Zheng, J. Gao, J. Wang, S.-P. Feng, H. Ohtani, J. Wang, G. Chen, Nano Lett. 12, 188 (2012).

    CAS  Google Scholar 

  100. J.W. Gao, R.T. Zheng, H. Ohtani, D.S. Zhu, G. Chen, Nano Lett. 9, 4128 (2009).

    CAS  Google Scholar 

  101. P.J. Lu, E. Zaccarelli, F. Ciulla, A.B. Schofield, F. Sciortino, D.A. Weitz, Nature 453, 499 (2008).

    CAS  Google Scholar 

Download references

Acknowledgments

This article was supported by S3 TEC, an Energy Frontier Research Center funded by the US Department of Energy, Office of Basic Energy Sciences, under Award DE-FG02-09ER46577 (for research on thermoelectric power generation); the Air Force Office of Scientific Research Multidisciplinary Research Program of the University Research Initiative (AFOSR MURI) through Ohio State University, under Contract FA9550-10-1-0533 (for research on thermoelectric cooling); and the US Department of Energy, Office of Energy Efficiency & Renewable Energy, Advanced Manufacturing Program (DOE/EEREAMO) under Award DE-EE0005756 (for developing polymers with high thermal conductivity).

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liao, B., Chen, G. Nanocomposites for thermoelectrics and thermal engineering. MRS Bulletin 40, 746–752 (2015). https://doi.org/10.1557/mrs.2015.197

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/mrs.2015.197

Navigation