Skip to main content

Advertisement

Log in

Photovoltaic devices employing vacuum-deposited perovskite layers

  • Perovskite Photovoltaics
  • Published:
MRS Bulletin Aims and scope Submit manuscript

Abstract

Organic–inorganic perovskites have emerged as one of the most promising materials for future optoelectronics applications, most notably photovoltaics. The achievement of high-efficiency solar cells has been possible mainly through the understanding of the perovskite formation during the solution deposition of thin films. Vacuum deposition methods have also been developed and have intrinsic advantages over solution-based processing, including control over the film thickness and composition, low-temperature processing, and the possibility of preparing multilayer structures. This article summarizes the latest advances in the vacuum deposition of hybrid perovskites, with an emphasis on the application to photovoltaics. Methods for the deposition of perovskite thin films and the performances of the correspondent solar cells are reviewed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. N.J. Jeon, J.H. Noh, W.S. Yang, Y.C. Kim, S. Ryu, J. Seo, S.I. Seok, Nature 517, 476 (2015).

    Google Scholar 

  2. N.J. Jeon, J.H. Noh, Y.C. Kim, W.S. Yang, S. Ryu, S.I. Seok, Nat. Mater. 13, 897 (2014).

    Google Scholar 

  3. H. Zhou, Q. Chen, G. Li, S. Luo, T.-B. Song, H.-S. Duan, Z. Hong, J. You, Y. Liu, Y. Yang, Science 345, 542 (2014).

    Google Scholar 

  4. W. Nie, H. Tsai, R. Asadpour, J.-C. Blancon, A.J. Neukirch, G. Gupta, J.J. Crochet, M. Chhowalla, S. Tretiak, M.A. Alam, H.-L. Wang, A.D. Mohite, Science 347, 522 (2015).

    Google Scholar 

  5. D.T. Moore, H. Sai, K.W. Tan, D.-M. Smilgies, W. Zhang, H.J. Snaith, U. Wiesner, L.A. Estroff, J. Am. Chem. Soc. 137, 2350 (2015).

    Google Scholar 

  6. O. Malinkiewicz, C. Roldán-Carmona, A. Soriano, E. Bandiello, L. Camacho, M.K. Nazeeruddin, H.J. Bolink, Adv. Energy Mater. 4, 1400345 (2014).

    Google Scholar 

  7. C.-W. Chen, H.-W. Kang, S.-Y. Hsiao, P.-F. Yang, K.-M. Chiang, H.-W. Lin, Adv. Mater. 26, 6647 (2014).

    Google Scholar 

  8. Y. Chen, T. Chen, L. Dai, Adv. Mater. 27, 1053 (2015).

    Google Scholar 

  9. M. Liu, M.B. Johnston, H.J. Snaith, Nature 501, 395 (2013).

    Google Scholar 

  10. Q. Lin, A. Armin, R.C.R. Nagiri, P.L. Burn, P. Meredith, Nat. Photonics 9, 106 (2015).

    Google Scholar 

  11. O. Malinkiewicz, A. Yella, Y.H. Lee, G.M. Espallargas, M. Graetzel, M.K. Nazeeruddin, H.J. Bolink, Nat. Photonics 8, 128 (2013).

    Google Scholar 

  12. D.B. Mitzi, K. Chondroudis, C.R. Kagan, IBM J. Res. Dev. 45, 29 (2001).

    Google Scholar 

  13. D.B. Mitzi, Chem. Mater. 13, 3283 (2001).

    Google Scholar 

  14. M. Era, T. Hattori, T. Taira, T. Tsutsui, Chem. Mater. 9, 8 (1997).

    Google Scholar 

  15. L.K. Ono, S. Wang, Y. Kato, S.R. Raga, Y. Qi, Energy Environ. Sci. 7, 3989 (2014).

    Google Scholar 

  16. J. Burschka, N. Pellet, S.-J. Moon, R. Humphry-Baker, P. Gao, M.K. Nazeeruddin, M. Gratzel, Nature 499, 316 (2013).

    Google Scholar 

  17. M. Era, K. Maeda, T. Tsutsui, Thin Solid Films 331, 285 (1998).

    Google Scholar 

  18. D. Liu, M.K. Gangishetty, T.L. Kelly, J. Mater. Chem. A 2, 19873 (2014).

    Google Scholar 

  19. M.R. Leyden, L.K. Ono, S.R. Raga, Y. Kato, S. Wang, Y. Qi, J. Mater. Chem. A 2, 18742 (2014).

    Google Scholar 

  20. H. Hu, D. Wang, Y. Zhou, J. Zhang, S. Lv, S. Pang, X. Chen, Z. Liu, N.P. Padture, G. Cui, RSC Adv. 4, 28964 (2014).

    Google Scholar 

  21. A. Ng, Z. Ren, Q. Shen, S.H. Cheung, H.C. Gokkaya, G. Bai, J. Wang, L. Yang, S.K. So, A.B. Djurisic, W.W.-F. Leung, J. Hao, W.K. Chan, C. Surya, J. Mater. Chem. A (forthcoming).

  22. B.R. Sutherland, S. Hoogland, M.M. Adachi, P. Kanjanaboos, C.T.O. Wong, J.J. McDowell, J. Xu, O. Voznyy, Z. Ning, A.J. Houtepen, E.H. Sargent, Adv. Mater. 27, 53 (2014).

    Google Scholar 

  23. B.R. Sutherland, S. Hoogland, M.M. Adachi, C.T.O. Wong, E.H. Sargent, ACS Nano 8, 10947 (2014).

    Google Scholar 

  24. J.L. Richards, P.B. Hart, L.M. Gallone, J. Appl. Phys. 34, 3418 (1963).

    Google Scholar 

  25. H. Saltsburg, J. Chem. Phys. 42, 1303 (1965).

    Google Scholar 

  26. D.B. Mitzi, M.T. Prikas, K. Chondroudis, Chem. Mater. 11, 542 (1999).

    Google Scholar 

  27. K. Chondroudis, D.B. Mitzi, P. Brock, Chem. Mater. 12, 169 (1999).

    Google Scholar 

  28. S. Ahmad, C. Hanmandlu, P.K. Kanaujia, G.V. Prakash, Opt. Mater. Express 4, 1313 (2014).

    Google Scholar 

  29. F. Chiarella, A. Zappettini, F. Licci, I. Borriello, G. Cantele, D. Ninno, A. Cassinese, R. Vaglio, Phys. Rev. B: Condens. Matter 77, 45129 (2008).

    Google Scholar 

  30. G. Longo, L. Gil-Escrig, M.J. Degen, M. Sessolo, H.J. Bolink, Chem. Commun. 51, 7376 (2015).

    Google Scholar 

  31. J.-H. Im, I.-H. Jang, N. Pellet, M. Grätzel, N.-G. Park, Nat. Nanotechnol. 9, 927 (2014).

    Google Scholar 

  32. Y. Zhao, K. Zhu, J. Phys. Chem. Lett. 5, 4175 (2014).

    Google Scholar 

  33. P. Pistor, J. Borchert, W. Fränzel, R. Csuk, R. Scheer, J. Phys. Chem. Lett. 5, 3308 (2014).

    Google Scholar 

  34. S. Colella, E. Mosconi, P. Fedeli, A. Listorti, F. Gazza, F. Orlandi, P. Ferro, T. Besagni, A. Rizzo, G. Calestani, G. Gigli, F. De Angelis, R. Mosca, Chem. Mater. 25, 4613 (2013).

    Google Scholar 

  35. M.I. Dar, N. Arora, P. Gao, S. Ahmad, M. Grätzel, M.K. Nazeeruddin, Nano Lett. 14, 6991 (2014).

    Google Scholar 

  36. T.-W. Ng, C.-Y. Chan, M.-F. Lo, Z.Q. Guan, C.-S. Lee, J. Mater Chem. A 3, 9081 (2015).

    Google Scholar 

  37. H.-S. Kim, C.-R. Lee, J.-H. Im, K.-B. Lee, T. Moehl, A. Marchioro, S.-J. Moon, R. Humphry-Baker, J.-H. Yum, J.E. Moser, M. Grätzel, N.-G. Park, Sci. Rep. 2, 591 (2012).

    Google Scholar 

  38. M.M. Lee, J. Teuscher, T. Miyasaka, T.N. Murakami, H.J. Snaith, Science 338, 643 (2012).

    Google Scholar 

  39. L.E. Polander, P. Pahner, M. Schwarze, M. Saalfrank, C. Koerner, K. Leo, APL Mater. 2, 081503 (2014).

    Google Scholar 

  40. B.-S. Kim, T.-M. Kim, M.-S. Choi, H.-S. Shim, J.-J. Kim, Org. Electron. 17, 102 (2014).

    Google Scholar 

  41. C. Momblona, O. Malinkiewicz, C. Roldán-Carmona, A. Soriano, L. Gil-Escrig, E. Bandiello, M. Scheepers, E. Edri, H.J. Bolink, APL Mater. 2, 081504 (2014).

    Google Scholar 

  42. C. Roldán-Carmona, O. Malinkiewicz, A. Soriano, G. Mínguez Espallargas, A. Garcia, P. Reinecke, T. Kroyer, M.I. Dar, M.K. Nazeeruddin, H.J. Bolink, Energy Environ. Sci. 7, 994 (2014).

    Google Scholar 

  43. A. Mei, X. Li, L. Liu, Z. Ku, T. Liu, Y. Rong, M. Xu, M. Hu, J. Chen, Y. Yang, M. Grätzel, H. Han, Science 345, 295 (2014).

    Google Scholar 

  44. W.A. Laban, L. Etgar, Energy Environ. Sci. 6, 3249 (2013).

    Google Scholar 

Download references

Acknowledgment

We acknowledge support from the Spanish Ministry of Economy and Competitiveness (MINECO) (MAT2014–55200) and the Generalitat Valenciana (Prometeo/2012/053). C.M. would like to thank the MINECO for a predoctoral contract for a doctoral training grant (previously FPI).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michele Sessolo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sessolo, M., Momblona, C., Gil-Escrig, L. et al. Photovoltaic devices employing vacuum-deposited perovskite layers. MRS Bulletin 40, 660–666 (2015). https://doi.org/10.1557/mrs.2015.170

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/mrs.2015.170

Navigation