Skip to main content

Advertisement

Log in

Visualizing reacting single atoms in chemical reactions: Advancing the frontiers of materials research

  • Technical Feature
  • Published:
MRS Bulletin Aims and scope Submit manuscript

Abstract

Heterogeneous gas–solid catalyst reactions occur at the atomic level, and understanding and controlling complex catalytic reactions at this level is crucial for the development of improved processes and materials. There are postulations that single atoms and very small clusters can act as primary active sites in chemical reactions. Early applications of our novel aberration-corrected (AC) environmental (scanning) transmission electron microscope (E(S)TEM) with single-atom resolution are described. This instrument combines, for the first time, controlled operating temperatures and a continuous gas environment around the sample with full AC STEM capabilities for real-time in situ analysis and visualization of single atoms and clusters in nanoparticle catalysis. ESTEM imaging and analysis in controlled gas and temperature environments can provide unique insights into catalytic reaction pathways that may involve metastable intermediate states. Benefits include new knowledge and more environmentally friendly technological processes for health care and renewable energy as well as improved or replacement mainstream technologies in the chemical and energy industries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. P.L. Gai, E.D. Boyes, Microsc. Res. Tech. 72, 153 (2009).

    Google Scholar 

  2. P.L. Gai, K. Kourtakis, Science 267, 661 (1995).

    Google Scholar 

  3. E.D. Boyes, P.L. Gai, Ultramicroscopy 67, 219 (1997).

    Google Scholar 

  4. J. Haggin, Chem. Eng. News 73 (30), 39 (1995).

  5. P.L. Gai, Adv. Mater. 10, 1259 (1998).

    Google Scholar 

  6. E.P. Butler, K.F. Hale, Dynamic Experiments in the Electron Microscope (North Holland, Amsterdam, 1981).

  7. P.L. Gai, E.D. Boyes, S. Helveg, P.L. Hansen, S. Giorgio, C.R. Henry, MRS Bull. 32 (12), 1044 (2007).

  8. P.L. Gai, R. Sharma, F.M. Ross, MRS Bull. 33 (2), 107 (2008).

  9. S. Helveg, P.L. Hansen, Catal. Today 111, 68 (2005).

    Google Scholar 

  10. R. Sharma, P.A. Crozier, in Handbook of Microscopy for Nanotechnology, N. Yao, Z. Wang, Eds. (Kluwer, Dordrecht, The Netherlands, 2005), chap. 17.

  11. D. Zakhaov, D. Zamylrov, A. Mane, J. Elam, F. Ribiero, E. Stach, Microsc. Microanal. 12, 2 (2006).

    Google Scholar 

  12. C. Lopez-Cartes, S. Bernal, J.J. Calvino, M.A. Cauqui, G. Blanco, J.A. Perez-Omil, J.M. Pintado, S. Helveg, P.L. Hansen Chem. Commun. 5, 644 (2003).

  13. T.W. Hansen, J.B. Wagner, R.E. Dunin-Borkowski. Mater. Sci. Technol. 26, 1338 (2010).

  14. M. Walsh, K. Yoshida, A. Kuwabara, M. Pay, P.L. Gai, E.D. Boyes, Nano Lett. 12, 2027 (2012).

    Google Scholar 

  15. M. Haider, S. Uhlemann, E. Schwan, H. Rose, B. Kabius, K. Urban, Nature 392, 768 (1998).

    Google Scholar 

  16. P.L. Gai, E.D. Boyes, Microsc. Microanal. 11, 1526 (2005).

    Google Scholar 

  17. E.D. Boyes, P.L. Gai, C.R. Phys. 15, 200 (2014).

    Google Scholar 

  18. E.D. Boyes, M. Ward, L. Lari, P.L. Gai, Ann. Phys. (Berlin) 525, 423 (2013).

    Google Scholar 

  19. P.L. Gai, L. Lari, M. Ward, E.D. Boyes, Chem. Phys. Lett. 592, 355 (2014).

    Google Scholar 

  20. K. Urban, C.L. Jia, L. Houben, M. Lentzen, S.B. Mi, K. Tillman. Philos. Trans. R. Soc. Lond. A 367, 3735 (2009).

  21. A.V. Crewe, J. Wall, J. Langmore, Science 168, 1338 (1970).

    Google Scholar 

  22. J.M. LeBeau, S.D. Findlay, X. Wang, A.J. Jacobson, L.J. Allen, S. Stemmer, Phys. Rev. B Condens. Matter 79, 214110 (2009).

    Google Scholar 

  23. P. Batson, N. Dalby, O. Krivanek, Nature 418, 617 (2002).

    Google Scholar 

  24. P.L. Gai, J. Montero, K. Wilson, A. Lee, E.D. Boyes, Catal. Lett. 132, 182 (2009).

    Google Scholar 

Download references

Acknowledgements

This work is supported by the EPSRC (UK) critical mass grant EP/J0118058/1 awarded to PLG and EDB. The authors thank Michael Ward, Leonardo Lari, and Ian Wright for support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Edward D. Boyes.

Additional information

The following article is based on the Symposium X (Frontiers of Materials Research) presentation given by Pratibha L. Gai at the 2014 Materials Research Society Spring Meeting in San Francisco.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Boyes, E.D., Gai, P.L. Visualizing reacting single atoms in chemical reactions: Advancing the frontiers of materials research. MRS Bulletin 40, 600–609 (2015). https://doi.org/10.1557/mrs.2015.141

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/mrs.2015.141

Navigation