Skip to main content
Log in

Observing and measuring strain in nanostructures and devices with transmission electron microscopy

  • Elastic Strain Engineering
  • Published:
MRS Bulletin Aims and scope Submit manuscript

Abstract

The evolution of elastic strain engineering in nanostructures and devices requires characterization tools that can be used to not only observe but also quantify the actual strain in a sample, whether this strain is intrinsic or applied. Strain contrast in crystalline samples has always been one of the primary contrast mechanisms used for imaging the microstructure of a material in a transmission electron microscope (TEM). In this regard, TEM is a particularly powerful tool due to its ability to spatially resolve strain information with high precision and spatial resolution. This article reviews the techniques currently available for directly measuring strain in the TEM. Examples are given for measuring strain in semiconductor devices using imaging, diffraction, and holographic techniques. For strain measurement during in situ mechanical testing, two general methods are presented: the conversion of displacement from an actuation device or the direct measurement of strain using image features during deformation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. S.E. Thomson, M. Armstrong, C. Auth, M. Alavi, M. Buehler et al. IEEE Trans. Electron Devices 51, 1790 (2004).

  2. J.F. Nye, Physical Properties of Crystals: Their Representation by Tensors and Matrices (Oxford University Press, Oxford, 1985).

  3. P.M. Jones, G.M. Rackham, J.W. Steeds, Proc. R. Soc. London, Ser. A 354, 197 (1977).

    Google Scholar 

  4. A. Armigliato, R. Balboni, G.P. Carnevale, G. Pavia, D. Piccolo, S. Frabboni, A. Benedetti, A.G. Cullis, Appl. Phys. Lett. 82, 2172 (2003).

    Google Scholar 

  5. K. Usuda, T. Numata, T. Irisawa, N. Hirashita, S. Takagi, Mater. Sci. Eng., B 124125, 143 (2005).

  6. F. Uesugi, A. Hokazono, S. Takeno, Ultramicroscopy 111, 995 (2011).

    Google Scholar 

  7. R. Bierwolf, M. Hohenstein, F. Phillipp, O. Brandt, G.E. Crook, K. Ploog, Ultramicroscopy 49, 273 (1993).

    Google Scholar 

  8. M.J. Hÿtch, E. Snoeck, R. Kilaas, Ultramicroscopy 74, 131 (1998).

    Google Scholar 

  9. M.J. Hÿtch, E. Snoeck, F. Houdellier, F. Hüe, US Patent 8502143 (August 6, 2013).

  10. M.J. Hÿtch, F. Houdellier, F. Hüe, E. Snoeck, Nature 453, 1086 (2008).

    Google Scholar 

  11. M.J. Hÿtch, F. Houdellier, F. Hüe, E. Snoeck, Ultramicroscopy 111, 1328 (2011).

    Google Scholar 

  12. J.M. Gibson, M.M.J. Treacy, Ultramicroscopy 14, 345 (1984).

    Google Scholar 

  13. A. Lubk, E. Javon, N. Cherkashin, S. Reboh, C. Gatel, M.J. Hÿtch, Ultramicroscopy 136, 42 (2014).

    Google Scholar 

  14. P. Hirsch, A. Howie, R. Nicholson, D.W. Pashley, M.J. Whelan, Electron Microscopy of Thin Crystals (Krieger Publishing, Malabar, 1965).

  15. J.C.H. Spence, High-Resolution Electron Microscopy (Oxford University Press, Oxford, Ed. 3, 2003).

  16. M. J. Hÿtch, T. Plamann, Ultramicroscopy 87, 199 (2001).

    Google Scholar 

  17. A. Armigliato, R. Balboni, S. Frabboni, Appl. Phys. Lett. 86, 063508 (2005).

    Google Scholar 

  18. A. Chuvilin, U. Kaiser, Ultramicroscopy 104, 73 (2005).

    Google Scholar 

  19. L. Clément, R. Pantel, L.F.T. Kwakman, J.-L. Rouvière, Appl. Phys. Lett. 85, 651 (2004).

    Google Scholar 

  20. F. Houdellier, C. Roucau, L. Clément, J.L. Rouvière, M.J. Casanove, Ultramicroscopy 106, 951 (2006).

    Google Scholar 

  21. J. Huang, M.J. Kima, P.R. Chidambaram, R.B. Irwin, P.J. Jones, J.W. Weijtmans, E.M. Koontz, Y.G. Wang, S. Tang, R. Wise, Appl. Phys. Lett. 89, 063114 (2006).

    Google Scholar 

  22. P. Zhang, A.A. Istratov, E.R. Weber, C. Kisielowski, H. He, C. Nelson, J.C.H. Spence, Appl. Phys. Lett. 89, 161907 (2006).

    Google Scholar 

  23. W. Zhao, G. Duscher, G. Rozgonyi, M.A. Zikry, S. Chopra, M.C. Ozturk, Appl. Phys. Lett. 90, 191907 (2007).

    Google Scholar 

  24. K. Müller, A. Rosenauer, M. Schowalter, J. Zweck, R. Fritz, K. Volz, Microsc. Microanal. 18, 995 (2012).

    Google Scholar 

  25. H.H. Liu, X.F. Duan, Q. Xu, B.-G. Liu, Ultramicroscopy 108, 816 (2008).

    Google Scholar 

  26. A. Béché, J.-L. Rouvière, L. Clément, J.M. Hartmann, Appl. Phys. Lett. 95, 123114 (2009).

    Google Scholar 

  27. A. Armigliato, S. Frabboni, G.C. Gazzadi, Appl. Phys. Lett. 93, 161906 (2008).

    Google Scholar 

  28. J.P. Liu, K. Li, S.M. Pandey, F.L. Benistant, A. See, M.S. Zhou, L.C. Hsia, R. Schampers, D.O. Klenov, Appl. Phys. Lett. 93, 221912 (2008).

    Google Scholar 

  29. S.W. Kim, J.-H. Yoo, S.-M. Koo, D.-H. Ko, H.-J. Lee, Appl. Phys. Lett. 99, 133107 (2011).

    Google Scholar 

  30. T. Sato, H. Matsumoto, K. Nakano, M. Konno, M. Fukui, I. Nagaoki, Y. Taniguchi, J. Phys. Conf. Ser. 241, 012014 (2010).

    Google Scholar 

  31. M.J. Hÿtch, J.-L. Putaux, J.-M. Pénisson, Nature 423, 270 (2003).

    Google Scholar 

  32. K.-W. Ang, K.-J. Chui, V. Bliznetsov, C.-H. Tung, A. Du, N. Balasubramanian, G. Samudra, M.F. Li, Y.-C. Yeo, Appl. Phys. Lett. 86, 093102 (2005).

    Google Scholar 

  33. F. Hüe, M.J. Hÿtch, H. Bender, F. Houdellier, A. Claverie, Phys. Rev. Lett. 100, 156602 (2008).

    Google Scholar 

  34. J.H. Chung, G.D. Lian, L. Rabenberg, Appl. Phys. Lett. 93, 081909 (2008).

    Google Scholar 

  35. J.H. Chung, G.D. Lian, L. Rabenberg, IEEE Electron Device Lett. 31, 854 (2010).

    Google Scholar 

  36. D. Diercks, G. Lian, J. Chung, M. Kaufman, J. Microsc. 241, 195 (2010).

    Google Scholar 

  37. M. de Graef, Introduction to Conventional Transmission Electron Microscopy (Cambridge University Press, Cambridge, 2003).

  38. J. Demarest, R. Hull, S.T. Schonenberg, K.G.F. Janssens, Appl. Phys. Lett. 77, 412 (2000).

    Google Scholar 

  39. D. Cooper, J.-L. Rouvière, A. Béché, S. Kadkhodazadeh, E.S. Semenova, K. Yvind, R.E. Dunin-Borkowski, Appl. Phys. Lett. 99, 261911 (2011).

    Google Scholar 

  40. Y.Y. Wang, J. Bruley, H. van Meer, J. Li, A. Domenicucci, C.E. Murray, J. Rouvière, Appl. Phys. Lett. 103, 052104 (2013).

    Google Scholar 

  41. F. Hüe, M.J. Hÿtch, F. Houdellier, H. Bender, A. Claverie, Appl. Phys. Lett. 95, 073103 (2009).

    Google Scholar 

  42. D. Cooper, A. Béché, J.-M. Hartmann, V. Carron, J.-L. Rouvière, Appl. Phys. Lett. 96, 113508 (2010).

    Google Scholar 

  43. T. Denneulin, D. Cooper, J.-M. Hartmann, J.-L. Rouvière, J. Appl. Phys. 112, 094314 (2012).

    Google Scholar 

  44. Z.F. Wang, Y. Yao, X.Q. He, Y. Yang, L. Gu, Y.G. Wang, X.F. Duan, Mater. Trans. 53, 2019 (2012).

    Google Scholar 

  45. M.J. Hÿtch, F. Houdellier, N. Cherkashin, S. Reboh, E. Javon, P. Benzo, C. Gatel, E. Snoeck, A. Claverie, in Transmission Electron Microscopy in Micro-Nanoelectronics, A. Claverie, Ed. (Wiley, London, 2013), C. 4, pp. 81–106.

  46. C.T. Koch, V.B. Ozdol, P.A. van Aken, Appl. Phys. Lett. 96, 9 (2010).

    Google Scholar 

  47. E.P. Butler, Rep. Prog. Phys. 42, 833 (1979).

    Google Scholar 

  48. H.G.F. Wilsdorf, Rev. Sci. Instrum. 29, 323 (1958).

    Google Scholar 

  49. I. Robertson, P. Ferreira, G. Dehm, R. Hull, E.A. Stach, MRS Bull. 33, 122 (2008).

    Google Scholar 

  50. A.M. Minor, E.A. Stach, J.W. Morris Jr., Appl. Phys. Lett. 79, 1625 (2001).

    Google Scholar 

  51. A.M. Minor, S.A. Syed Asif, Z.W. Shan, E.A. Stach, E. Cyrankowski, T.J. Wyrobek, O.L. Warren, Nat. Mater. 5, 697 (2006).

    Google Scholar 

  52. Z.W. Shan, R.K. Mishra, S.A. Syed Asif, O.L. Warren, A.M. Minor, Nat. Mater. 7, 115 (2008).

    Google Scholar 

  53. M. Legros, D.S. Gianola, C. Motz, MRS Bull. 35, 354 (2010).

    Google Scholar 

  54. M.A. Haque, M.T.A. Saif, Proc. Natl. Acad. Sci. U.S.A. 101, 6335 (2004).

    Google Scholar 

  55. D. Kiener, A.M. Minor, Nano Lett. 11, 3816 (2011).

    Google Scholar 

  56. H. Guo, K. Chen, Y. Oh, K. Wang, C. Dejoie, S.A. Syed Asif, O.L. Warren, Z.W. Shan, J. Wu, A.M. Minor, Nano Lett. 11, 3207 (2011).

    Google Scholar 

  57. L. Tian, Y.Q. Cheng, Z.W. Shan, J. Li, C.C. Wang, X.D. Han, J. Sun, E. Ma, Nat. Commun. 3, 609 (2012).

    Google Scholar 

  58. C. Chisholm, H. Bei, M. Lowry, J. Oh, S.A. Syed Asif, O.L. Warren, Z.W. Shan, E.P. George, A.M. Minor, Acta Mater. 60, 2258 (2012).

    Google Scholar 

Download references

Acknowledgments

M.J.H. acknowledges financial support from the European Union under the Seventh Framework Programme under a contract for an Integrated Infrastructure Initiative Reference 312483-ESTEEM2 and the European Metrology Research Programme (EMRP) Project IND54 Nanostrain. The EMRP is jointly funded by the EMRP participating countries within EURAMET and the European Union. A.M.M. acknowledges support from the National Center for Electron Microscopy, Lawrence Berkeley National Laboratory, which is supported by the US Department of Energy under Contract #DE-AC02–05CH11231.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin J. Hÿtch.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hÿtch, M.J., Minor, A.M. Observing and measuring strain in nanostructures and devices with transmission electron microscopy. MRS Bulletin 39, 138–146 (2014). https://doi.org/10.1557/mrs.2014.4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/mrs.2014.4

Navigation