Skip to main content
Log in

Observation of materials processes in liquids by electron microscopy

  • Frontiers of in situ electron microscopy
  • Published:
MRS Bulletin Aims and scope Submit manuscript

Abstract

Materials synthesis and the functioning of devices often involve liquid media. However, direct visualization of dynamic processes in liquids, especially with high spatial and temporal resolution, has been challenging. For solid materials, advances in aberration-corrected electron microscopy have made observations of atomic-level features a routine practice. Here, we discuss the extent to which one can take advantage of the resolution of modern electron microscopes to image phenomena occurring in liquids. We describe the fundamentals of two different experimental approaches that use closed and open liquid cells. We illustrate the capabilities of each approach by considering processes in batteries and nucleation and growth of nanoparticles from solution. Liquid-cell electron microscopy appears to be duly fulfilling its role and promise for in situ studies of nanoscale processes in liquids, revealing physical and chemical processes that are otherwise difficult to observe.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. M. Haider, S. Uhlemann, E. Schwan, H. Rose, B. Kabius, K. Urban, Nature 392 (6678), 768 (1998).

    CAS  Google Scholar 

  2. K.W. Urban, Nat. Mater. 8, 260 (2009).

    CAS  Google Scholar 

  3. D.A. Muller, Nat. Mater. 8, 263 (2009).

    CAS  Google Scholar 

  4. A.R. Harutyunyan, G.G. Chen, T.M. Paronyan, E.M. Pigos, O.A. Kuznetsov, K. Hewaparakrama, S.M. Kim, D. Zakharov, E.A. Stach, G.U. Sumanasekera, Science 326 (5949), 116 (2009).

    CAS  Google Scholar 

  5. B.J. Kim, J. Tersoff, S. Kodambaka, M.C. Reuter, E.A. Stach, F.M. Ross, Science 322 (5904), 1070 (2008).

    CAS  Google Scholar 

  6. P.L. Hansen, J.B. Wagner, S. Helveg, J.R. Rostrup-Nielsen, B.S. Clausen, H. Topsøe, Science 295 (5562), 2053 (2002).

    CAS  Google Scholar 

  7. P. Nolte, A. Stierle, N.Y. Jin-Phillipp, N. Kasper, T.U. Schulli, H. Dosch, Science 321, 1654 (2008).

    CAS  Google Scholar 

  8. H. Yoshida, Y. Kuwauchi, J.R. Jinschek, K. Sun, S. Tanaka, M. Kohyama, S. Shimada, M. Haruta, S. Takeda, Science 335, 317 (2012).

    CAS  Google Scholar 

  9. A.M. Minor, S.A.S. Asif, Z.W. Shan, E.A. Stach, E. Cyrankowski, T.J. Wyrobek, O.L. Warren, Nat. Mater. 5 (9), 697 (2006).

    CAS  Google Scholar 

  10. H.M. Zheng, R.K. Smith, Y.W. Jun, C. Kisielowski, U. Dahmen, A.P. Alivisatos, Science 324 (5932), 1309 (2009).

    CAS  Google Scholar 

  11. H.-G. Liao, L.K. Cui, S. Whitelam, H.M. Zheng, Science 336 (6084), 1011 (2012).

    CAS  Google Scholar 

  12. J.E. Evans, K.L. Jungjohann, N.D. Browning, I. Arslan, Nano Lett. 11 (7), 2809 (2011).

    CAS  Google Scholar 

  13. H.M. Zheng, S.A. Claridge, A.M. Minor, A.P. Alivisatos, U. Dahmen, Nano Lett. 9 (6), 2460 (2009).

    CAS  Google Scholar 

  14. M.J. Williamson, R.M. Tromp, P.M. Vereecken, R. Hull, F.M. Ross, Nat. Mater. 2 (8), 532 (2003).

    CAS  Google Scholar 

  15. E.R. White, S.B. Singer, V. Augustyn, W.A. Hubbard, M. Mecklenburg, B. Dunn, B.C. Regan, ACS Nano 6 (7), 6308 (2012).

    CAS  Google Scholar 

  16. M. Gu, L.R. Parent, B.L. Mehdi, R.R. Unocic, M.T. McDowell, R.L. Sacci, W. Xu J.G. Connell, P. Xu, P. Abellan, X. Chen, Y. Zhang, D.E. Perea, J.E. Evans, L.J. Lauhon, J.-G. Zhang, J. Liu, N.D. Browning, Y. Cui, I. Arslan, C.-M. Wang, Nano Lett. 13 (12), 6106 (2013).

    CAS  Google Scholar 

  17. X. Chen, K.W. Noh, J.G. Wen, S.J. Dillon, Acta Mater. 60, 192 (2012).

    CAS  Google Scholar 

  18. U. Mirsaidov, C.-D. Ohl, P. Matsudaira, Soft Matter 8, 7108 (2012).

    CAS  Google Scholar 

  19. E.R. White, M. Mecklenburg, S.B. Singer, S. Aloni, B.C. Regan, Appl. Phys. Express 4, 055201 (2011).

    Google Scholar 

  20. D. Li, M.H. Nielsen, J.R. Lee, C. Frandsen, J.F. Banfield, J.J. De Yoreo, Science 336 (6084), 1014 (2012).

    CAS  Google Scholar 

  21. T.W. Huang, S.Y. Liu, Y.J. Chuang, H.Y. Hsieh, C.Y. Tsai, W.J. Wu, C.T. Tsai, U. Mirsaidov, P. Matsudaira, C.S. Chang, F.G. Tseng, F.R. Chen, Soft Matter 9 (37), 8856 (2013).

    CAS  Google Scholar 

  22. M.T. Proetto, A.M. Rush, M.-P. Chien, P. Abellan Baeza, J.P. Patterson, M.P. Thompson, N.H. Olson, C.E. Moore, A.L. Rheingold, C. Andolina, J. Millstone, S.B. Howell, N.D. Browning, J.E. Evans, N.C. Gianneschi, J. Am. Chem. Soc. 136 (4), 1162 (2014).

    CAS  Google Scholar 

  23. N. de Jonge, D.B. Peckys, G.J. Kremers, D.W. Piston, Proc. Natl. Acad. Sci. U.S.A. 106 (7), 2159 (2009).

    Google Scholar 

  24. U.M. Mirsaidov, H.M. Zheng, Y. Casana, P. Matsudaira, Biophys. J. 102 (4), L15 (2012).

    CAS  Google Scholar 

  25. J.E. Evans, K.L. Jungjohann, P.C.K. Wong, P.-L. Chiu, G.H. Dutrow, I. Arslan, N.D. Browning, Micron 43 (11), 1085 (2012).

    CAS  Google Scholar 

  26. N. de Jonge, F.M. Ross, Nat. Nano technol. 6 (11), 695 (2011).

    Google Scholar 

  27. K. Degen, M. Dukes, J.R. Tanner, D.F. Kelly, RSC Adv. 2, 2408 (2012).

    CAS  Google Scholar 

  28. E.A. Ring, N. de Jonge, Microsc. Microanal. 16, 622 (2010).

    CAS  Google Scholar 

  29. K. Tai, Y. Liu, S.J. Dillon, Microsc. Microanal. 20, 330 (2014).

    CAS  Google Scholar 

  30. H.-G. Liao, D. Zherebetskyy, H.L. Xin, C. Czarnik, P. Ercius, H. Elmlund, M. Pan, L.W. Wang, H.M. Zheng, Science 345 (6199), 916 (2014).

    CAS  Google Scholar 

  31. T.J. Woehl, K.L. Jungjohann, J.E. Evans, I. Arslan, W.D. Ristenpart, N.D. Browning, Ultramicroscopy 127, 53 (2013).

    CAS  Google Scholar 

  32. K.L. Jungjohann, J.E. Evans, J.A. Aguiar, I. Arslan, N.D. Browning, Microsc. Microanal. 18 (03), 621 (2012).

    CAS  Google Scholar 

  33. R.F. Egerton, Ultramicroscopy 127, 100 (2013).

    CAS  Google Scholar 

  34. N. de Jonge, D.B. Peckys, G.J. Kremers, D.W. Piston, Proc. Natl. Acad. Sci. U.S.A. 106, 2159 (2009).

    Google Scholar 

  35. T.J. Woehl, J.E. Evans, I. Arslan, W.D. Ristenpart, N.D. Browning, ACS Nano 6 (10), 8599 (2012).

    CAS  Google Scholar 

  36. D.A. Welch, R. Faller, J.E. Evans, N.D. Browning, Ultramicroscopy 135, 36 (2013).

    CAS  Google Scholar 

  37. K.L. Jungjohann, J.E. Evans, J.A. Aguiar, I. Arslan, N.D. Browning, Microsc. Microanal. 18 (3), 621 (2012).

    CAS  Google Scholar 

  38. J.F. Creemer, S. Helveg, G.H. Hoveling, S. Ullmann, A.M. Molenbroek, P.M. Sarro, H.W. Zandbergen, Ultramicroscopy 108, 993 (2008).

    CAS  Google Scholar 

  39. J.M. Grogan, H.H. Bau, J. Microelectromech. Syst. 19, 885 (2010).

    CAS  Google Scholar 

  40. E. Jensen, A. Burrows, K. Mølhave, Microsc. Microanal. 20, 445 (2014).

    CAS  Google Scholar 

  41. J.M. Yuk, J. Park, P. Ercius, K. Kim, D.J. Hellebusch, M.F. Crommie, J.Y. Lee, A. Zettl, A.P. Alivisatos, Science 336 (6077), 61 (2012).

    CAS  Google Scholar 

  42. C.M. Wang, W. Xu, J. Liu, D.W. Choi, B. Arey, L.V. Saraf, J.G. Zhang, Z.G. Yang, S. Thevuthasan, D.R. Baer, N. Salmon, J. Mater. Res. 25, 1541 (2010).

    CAS  Google Scholar 

  43. J.Y. Huang, L. Zhong, C.M. Wang, J.P. Sullivan, W. Xu, L.Q. Zhang, S.X. Mao, N.S. Hudak, X.H. Liu, A. Subramanian, H. Fan, L. Qi, A. Kushima, J. Li, Science 330 (6010), 1515 (2010).

    CAS  Google Scholar 

  44. X.H. Liu, H. Zheng, L. Zhong, S. Huang, K. Karki, L.Q. Zhang, Y. Liu, A. Kushima, W.T. Liang, J.W. Wang, J.-H. Cho, E. Epstein, S.A. Dayeh, S.T. Picraux, T. Zhu, J. Li, J.P. Sullivan, J. Cumings, C.-M. Wang, S.X. Mao, Z.Z. Ye, S. Zhang, J.Y. Huang, Nano Lett. 11 (8), 3312 (2011).

    CAS  Google Scholar 

  45. X.H. Liu, S. Huang, S.T. Picraux, J. Li, T. Zhu, J.Y. Huang, Nano Lett. 11 (9), 3991 (2011).

    CAS  Google Scholar 

  46. Y. Liu, N.S. Hudak, D.L. Huber, S.J. Limmer, J.P. Sullivan, J.Y. Huang, Nano Lett. 11 (10), 4188 (2011).

    CAS  Google Scholar 

  47. A. Kushima, X.H. Liu, G. Zhu, Z.L. Wang, J.Y. Huang, J. Li, Nano Lett. 11, (11), 4535 (2011).

    CAS  Google Scholar 

  48. X.H. Liu, J.W. Wang, Y. Liu, H. Zheng, A. Kushima, S. Huang, T. Zhu, S.X. Mao, J. Li, S. Zhang, W. Lu, J.M. Tour, J.Y. Huang, Carbon 50 (10), 3836 (2012).

    CAS  Google Scholar 

  49. Y. Liu, H. Zheng, X.H. Liu, S. Huang, T. Zhu, J. Wang, A. Kushima, N.S. Hudak, X. Huang, S. Zhang, S.X. Mao, X. Qian, J. Li, J.Y. Huang, ACS Nano 5 (9), 7245 (2011).

    CAS  Google Scholar 

  50. M.M. Islam, T. Bredow, J. Phys. Chem. C 113, 672 (2009).

    CAS  Google Scholar 

  51. F. Wang, H.-C. Yu, M.-H. Chen, L. Wu, N. Pereira, K. Thornton, A. Van der Ven, Y. Zhu, G.G. Amatucci, J. Graetz, Nat. Commun. 3, 1201 (2012).

    Google Scholar 

  52. H.-G. Liao, H. Zheng, J. Am. Chem. Soc. 135 (13), 5038 (2013).

    CAS  Google Scholar 

  53. K.L. Jungjohann, S. Bliznakov, P.W. Sutter, E.A. Stach, E.A. Sutter, Nano Lett. 13 (6), 2964 (2013).

    CAS  Google Scholar 

  54. O. Akhavan, E. Ghaderi, J. Phys. Chem. C 113 (47), 20214 (2009).

    CAS  Google Scholar 

  55. A.B. Panda, G. Glaspell, M.S. El-Shall, J. Am. Chem. Soc. 128 (9), 2790 (2006).

    CAS  Google Scholar 

  56. X.-H. Liao, N.-Y. Chen, S. Xu, S.-B. Yang, J.-J. Zhu, J. Cryst. Growth 252, (4), 593 (2003).

    CAS  Google Scholar 

  57. Z. Li, L. Peng, Y. Fang, Z. Chen, D. Pan, M. Wu, Radiat. Phys. Chem. 80, (12), 1333 (2011).

    CAS  Google Scholar 

  58. F. Zhou, R. Zhou, X. Hao, X. Wu, W. Rao, Y. Chen, D. Gao, Radiat. Phys. Chem. 77 (2), 169 (2008).

    CAS  Google Scholar 

  59. R. Divan, Q. Ma, D. Mancini, D. Keane, Rom. J. Inf. Sci. Technol. 11 (1), 71 (2008).

    Google Scholar 

  60. J. Rojas, C. Castano, Radiat. Phys. Chem. 81 (1), 16 (2012).

    CAS  Google Scholar 

  61. Y. Mishra, D. Avasthi, P. Kulriya, F. Singh, D. Kabiraj, A. Tripathi, J. Pivin, I. Bayer, A. Biswas, Appl. Phys. Lett. 90 (7), 073110 (2007).

    Google Scholar 

  62. H.L. Xin, H. Zheng, Nano Lett. 12 (3), 1470 (2012).

    CAS  Google Scholar 

  63. A. Radisic, P.M. Vereecken, J.B. Hannon, P.C. Searson, F.M. Ross, Nano Lett. 6, 238 (2006).

    CAS  Google Scholar 

  64. A. Radisic, F.M. Ross, P.C. Searson, J. Phys. Chem. B 110, 7862 (2006).

    CAS  Google Scholar 

  65. A. Radisic, P.M. Vereecken, P.C. Searson, F.M. Ross, Surf. Sci. 600, 1817 (2006).

    CAS  Google Scholar 

  66. M. den Heijer, I. Shao, A. Radisic, M.C. Reuter, F.M. Ross, APL Mater. 2, 022101 (2014).

    Google Scholar 

  67. J.M. Grogan, N.M. Schneider, F.M. Ross, H.H. Bau, J. Indian Inst. Sci. 92, 295 (2012).

    CAS  Google Scholar 

  68. M.E. Holtz, Y. Yu, D. Gunceler, J. Gao, R. Sundararaman, K.A. Schwarz, T.S.A. Arias, H.C.D. Abruña, D.A. Muller, Nano Lett. 14, 1453 (2014).

    CAS  Google Scholar 

  69. R.L. Sacci, N.J. Dudney, K.L. More, L.R. Parent, I. Arslan, N.D. Browning, R.R. Unocic, Chem. Commun. 50, 2104 (2014).

    CAS  Google Scholar 

  70. Z. Zeng, W.-I. Liang, H.-G. Liao, H.L. Xin, Y.-H. Chu, H. Zheng, Nano Lett. 14, 1745 (2014).

    CAS  Google Scholar 

  71. R.R. Unocic, R.L. Sacci, G.M. Brown, G.M. Veith, N.J. Dudney, K.L. More F.S. Walden II, D.S. Gardiner, J. Damiano, D.P. Nackashi, Microsc. Microanal. 20, 452 (2014).

    CAS  Google Scholar 

  72. D. Morgan, A. Van der Ven, G. Ceder, Electrochem. Solid-State Lett. 7 (2), A30–A32 (2004).

    CAS  Google Scholar 

  73. P. Gibot, M. Casas-Cabanas, L. Laffont, S. Levasseur, P. Carlach, S. Hamelet, J.M. Tarascon, C. Masquelierk, Nat. Mater. 7 (9), 741 (2008).

    CAS  Google Scholar 

  74. R. Malik, F. Zhou, G. Ceder, Nat. Mater. 10 (8), 587 (2011).

    CAS  Google Scholar 

  75. Y. Zhu, J.W. Wang, Y. Liu, X. Liu, A. Kushima, Y. Liu, Y. Xu, S.X. Mao, J. Li, C. Wang, J.Y. Huang, Adv. Mater. 25, 5461 (2013).

    CAS  Google Scholar 

  76. K. Kang Xu, A. von Cresce, U. Lee, Langmuir 26 (13), 11538 (2010).

    Google Scholar 

  77. J.M. Grogan, N.M. Schneider, F.M. Ross, H.H. Bau, Nano Lett. 14, 359 (2014).

    CAS  Google Scholar 

  78. J. Belloni, M. Mostafavi, H. Remita, J.L. Marignier, M.O. Delcourt, New J. Chem. 22 (11), 1239 (1998).

    CAS  Google Scholar 

  79. J. Belloni, Catal. Today 113 (3–4), 141 (2006).

    CAS  Google Scholar 

  80. P. Abellan, B.L. Mehdi, L.R. Parent, M. Gu, C. Park, W. Xu, Y. Zhang, I. Arslan, J.-G. Zhang, C.-M. Wang, J.E. Evans, N.D. Browning, Nano Lett. 14, 1293 (2014).

    CAS  Google Scholar 

Download references

Acknowledgements

C.-M.W. acknowledges the support of the Assistant Secretary for Energy Efficiency and Renewable Energy, Office of Vehicle Technologies, of the US Department of Energy (DOE) under Contract DE-AC02-05CH11231, Subcontract 18769, under the Batteries for Advanced Transportation Technologies program. The in situ TEM capability is developed under the Chemical Imaging Initiative at Pacific Northwest National Laboratory (PNNL). C.-M.W. also acknowledges the support of the William R. Wiley Environmental Molecular Sciences Laboratory, a national scientific user facility sponsored by DOE’s Office of Biological and Environmental Research and located at PNNL. PNNL is operated by Battelle for the DOE under Contract DE-AC05-76RL01830. H.-G.L. was supported by the DOE Office of Science Early Career Research Program under the supervision of Dr. Zheng at Lawrence Berkeley National Laboratory (LBNL). H.-G.L. also acknowledges the facility support of the National Center for Electron Microscopy at LBNL, which is supported by the Office of Basic Energy Sciences, Division of Materials Sciences and Engineering, of the US DOE under Contract DE-AC02-05CH11231.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, CM., Liao, HG. & Ross, F.M. Observation of materials processes in liquids by electron microscopy. MRS Bulletin 40, 46–52 (2015). https://doi.org/10.1557/mrs.2014.283

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/mrs.2014.283

Navigation