Skip to main content
Log in

Lanthanide-based nanostructures for optical bioimaging: Small particles with large promise

  • Biological Interactions of Oxide Nanoparticles: The Good and The Evil
  • Published:
MRS Bulletin Aims and scope Submit manuscript

Abstract

Fast and significant progress has been achieved in the development of new biomarkers in recent years providing promising approaches for the reliable detection of diseases at an early stage. Yet, the disadvantages of commonly used markers, including photobleaching, autofluorescence, phototoxicity, and scattering, when ultraviolet or visible light is used for excitation, need to be overcome. Lanthanide-doped host materials are well known for their excellent optical properties, such as their ability to (up)convert near-infrared excitation to higher energies spanning the ultraviolet, visible, and near-infrared regions or to undergo strong near-infrared luminescence following near-infrared excitation. Their application as biomarkers may overcome the aforementioned drawbacks of conventional dyes. Thus, lanthanide-based nanostructures are highly promising candidates for cellular and small animal imaging, while the assessment of their cytotoxicity remains a crucial issue. Recent developments in the field of upconversion and near-infrared bioimaging focusing on some of the latest results obtained in in vitro and in vivo studies assessing the toxicity of lanthanide-based nanophosphors are highlighted in this review.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Scheme 1

Similar content being viewed by others

References

  1. R.R. Anderson, J.A. Parrish, J. Invest. Dermatol. 77, 13 (1981).

    Google Scholar 

  2. A.M. Smith, M.C. Mancini, S. Nie, Nat. Nanotechnol. 4, 710 (2009).

    Google Scholar 

  3. E. Hemmer, N. Venkatachalam, H. Hyodo, A. Hattori, Y. Ebina, H. Kishimoto, K. Soga, Nanoscale 5, 11339 (2013).

    Google Scholar 

  4. S.L. Troyan, V. Kianzad, S.L. Gibbs-Strauss, S. Gioux, A. Matsui, R. Oketokoun, L. Ngo, A. Khamene, F. Azar, J.V. Frangioni, Ann. Surg. Oncol. 16, 2943 (2009).

    Google Scholar 

  5. C. Yao, Y. Tong, Trends Analyt. Chem. 39, 60 (2012).

    Google Scholar 

  6. G. Blasse, B.C. Grabmaier, Luminescent Materials (Springer Verlag, Berlin, 1994).

    Google Scholar 

  7. K. Soga, in Application of Ceramic Nanophosphors for Biomedical Photonics, M.C. Tan, Ed. (Transworld Research Network, Kerala, India, 2009), p. 223.

  8. F. Vetrone, J.A. Capobianco, Int. J. Nanotechnol. 5, 1306 (2008).

    Google Scholar 

  9. E. Hemmer, H. Takeshita, T. Yamano, T. Fujiki, Y. Kohl, K. Löw, N. Venkatachalam, H. Hyodo, H. Kishimoto, K. Soga, J. Mater. Sci. Mater. Med. 23, 2399 (2012).

    Google Scholar 

  10. Y. Mao, T. Tran, X. Guo, J.Y. Huang, C.K. Shih, K.L. Wang, J.P. Chang, Adv. Funct. Mater. 19, 748 (2009).

    Google Scholar 

  11. T. Konishi, M. Shimizu, Y. Kameyama, K. Soga, J. Mater. Sci. Mater. Electron. 18 (S1), 183 (2007).

  12. G.A. Sotiriou, M. Schneider, S.E. Pratsinis, J. Phys. Chem. C 115, 1084 (2011).

    Google Scholar 

  13. M. Kamimura, N. Kanayama, K. Tokuzen, K. Soga, Y. Nagasaki, Nanoscale 3, 3705 (2011).

    Google Scholar 

  14. N. Venkatachalam, E. Hemmer, T. Yamano, H. Hyodo, H. Kishimoto, K. Soga, Prog. Cryst. Growth Charact. Mater. 58, 121 (2012).

    Google Scholar 

  15. T.Sh. Atabaev, O.S. Jin, J.H. Lee, D.-W. Han, H.H.T. Vu, Y.-H. Hwang, H.-K. Kim, RSC Adv. 2, 9495 (2012).

    Google Scholar 

  16. G.A. Sotiriou, D. Franco, D. Poulikakos, A. Ferrari, ACS Nano 6, 3888 (2012).

    Google Scholar 

  17. K. Soga, K. Tokuzen, K. Tsuji, T. Yamano, H. Hyodo, H. Kishimoto, Eur. J. Inorg. Chem. 18, 2673 (2010).

    Google Scholar 

  18. N. Venkatachalam, T. Yamano, E. Hemmer, H. Hyodo, H. Kishimoto, K. Soga J. Am. Ceram. Soc. 96, 2759 (2013).

  19. S.F. Lim, R. Riehn, C. Tung, W.S. Ryu, R. Zhuo, J. Dalland, R.H. Austin, Nanotechnology 20, 405701 (2009).

    Google Scholar 

  20. S. Setua, D. Menon, A. Asok, S. Nair, M. Koyakutty, Biomaterials 31, 714 (2010).

    Google Scholar 

  21. N. Luo, X. Tian, C. Yang, J. Xiao, W. Hu, D. Chen, L. Li, Phys. Chem. Chem. Phys. 15, 12235 (2013).

    Google Scholar 

  22. G. Azizian, N. Riyahi-Alam, S. Haghgoo, M. Saffari, R. Zohdiaghdam, E. Gorj, Mater. Sci. Poland 31, 158 (2013).

    Google Scholar 

  23. L. Zhou, Z. Gu, X. Liu, W. Yin, G. Tian, L. Yan, S. Jin, W. Ren, G. Xing, W. Li, X. Chang, Z. Hu, Y. Zhao, J. Mater. Chem. 22, 966 (2012).

    Google Scholar 

  24. M. Ahrén, L. Selegard, A. Klasson, F. Söderlind, N. Abrikossova, C. Skoglund, T. Bengtsson, M. Engström, P.-O. Käll, K. Uvdal, Langmuir 26, 5753 (2010).

    Google Scholar 

  25. Z. Liu, X. Liu, Q. Yuan, K. Dong, L. Jiang, Z. Li, J. Ren, X. Qu, J. Mater. Chem. 22, 14982 (2012).

    Google Scholar 

  26. E. Hemmer, N. Venkatachalam, H. Hyodo, K. Soga, Adv. Mater. Sci. Eng. 2012, 748098 (2012).

    Google Scholar 

  27. E. Hemmer, T. Yamano, H. Kishimoto, N. Venkatachalam, H. Hyodo, K. Soga Acta Biomater. 9, 4734 (2013).

  28. K. Kattel, J.Y. Park, W. Xu, H.G. Kim, E.J. Lee, B.A. Bony, W.C. Heo, S. Jin, J.S. Baeck, Y. Chang, T.J. Kim, J.E. Bae, K.S. Chae, G.H. Lee, Biomaterials 33, 3254 (2012).

    Google Scholar 

  29. S. Lee, T. Kasuga, K. Kato, J. Ceram. Soc. Jpn. 118, 428 (2010).

    Google Scholar 

  30. B.C. Heng, G.K. Das, X. Zhao, L.-L. Ma, T.T.-Y. Tan, K.W. Ng, J.S.-C. Loo, Biointerphases 5, FA88 (2010).

    Google Scholar 

  31. M. Nichkova, D. Dosev, S.J. Gee, B.D. Hammock, I.M. Kennedy, Anal. Chem. 77, 6864 (2005).

    Google Scholar 

  32. R.M. Petoral Jr., F. Söderlind, A. Klasson, A. Suska, M.A. Fortin, N. Abrikossova, L. Selegård, P.-O. Käll, M. Engström, K. Uvda, J. Phys. Chem. C 113, 6913 (2009).

    Google Scholar 

  33. G.K. Das, T.T.Y. Tan, J. Phys. Chem. C 112, 11211 (2008).

    Google Scholar 

  34. D. Schubert, R. Dargusch, J. Raitano, S.-W. Chan, Biochem. Biophys. Res. Commun. 342, 86 (2006).

    Google Scholar 

  35. K. Kattel, J.Y. Park, W. Xu, H.G. Kim, E.J. Lee, B.A. Bony, W.C. Heo, Y. Chang, T.J. Kim, J.Y. Do, K.S. Chae, Y.W. Kwak, G.H. Lee, Colloids Surf. A 394, 85 (2012).

    Google Scholar 

  36. G. Chen, T.Y. Ohulchanskyy, R. Kumar, H. Agren, P.N. Prasad, ACS Nano 4, 3163 (2010).

    Google Scholar 

  37. F. Vetrone, R. Naccache, A.J. de la Fuente, F. Sanz-Rodrıíguez, A. Blazquez-Castro, E. Martin Rodriguez, D. Jaque, J. García Solé, J.A. Capobianco, Nanoscale 2, 495 (2010).

    Google Scholar 

  38. T. Cao, T. Yang, Y. Gao, Y. Yang, H. Hu, F. Li, Inorg. Chem. Commun. 13, 392 (2010).

    Google Scholar 

  39. L.-Q. Xiong, Z.-G. Chen, M.-X. Yu, F.-Y. Li, C. Liu, C.-H. Huang, Biomaterials 30, 5592 (2009).

    Google Scholar 

  40. L. Xiong, T. Yang, Y. Yang, C. Xu, F. Li, Biomaterials 31, 7078 (2010).

    Google Scholar 

  41. J. Zhou, Y. Sun, X. Du, L. Xiong, H. Hua, F. Li, Biomaterials 31, 3287 (2010).

    Google Scholar 

  42. A. Xia, M. Chen, Y. Gao, D. Wu, W. Feng, F. Li, Biomaterials 33, 5394 (2012).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eva Hemmer.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hemmer, E., Vetrone, F. & Soga, K. Lanthanide-based nanostructures for optical bioimaging: Small particles with large promise. MRS Bulletin 39, 960–964 (2014). https://doi.org/10.1557/mrs.2014.223

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/mrs.2014.223

Navigation