Skip to main content
Log in

Advanced human in vitro models to assess metal oxide nanoparticle-cell interactions

  • Biological Interactions of Oxide Nanoparticles: The Good and The Evil
  • Published:
MRS Bulletin Aims and scope Submit manuscript

Abstract

Engineered nanoparticles, in particular metal oxide nanoparticles, with their unique and novel properties, enable a plethora of new applications in various fields of research. These new properties have raised concerns about potential adverse effects for the environment and human health and are nowadays very controversial. A reliable, cost- and time-effective, rapid and mechanistic-based testing strategy is needed to replace current conventional phenomenological assessments. Today’s in vitro technology, providing human-based advanced cellular models representing different organ barriers such as skin, lung, placenta, or liver, may cover this need. The aim of this article is to present the current changes in (nano) toxicology strategies, the extent to which in vitro models have achieved general acceptance, and how the relevance of these models can further be improved using examples of selected metal oxide nanoparticles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

References

  1. J.W. Rasmussen, E. Martinez, P. Louka, D.G. Wingett, Expert Opin. Drug Deliv. 7, 1063 (2010).

    Google Scholar 

  2. A.K. Gupta, M. Gupta, Biomaterials 26, 3995 (2005).

    Google Scholar 

  3. T. Hartung, C. Rovida, Nature 460, 1080 (2009).

    Google Scholar 

  4. G.P. Rossini, T. Hartung, ALTEX 29, 359 (2012).

    Google Scholar 

  5. Committee on Toxicity Testing and Assessment of Environmental Agents, National Research Council, Toxicity Testing for the 21st Century: A Vision and a Strategy (The National Academies Press, Washington, DC, 2007).

    Google Scholar 

  6. A. Astashkina, D.W. Grainger, Adv. Drug Deliv. Rev. 69–70, 1 (2014).

    Google Scholar 

  7. T. Hartung, Nature 460, 208 (2009).

    Google Scholar 

  8. V.V. Mody, R. Siwale, A. Singh, H.R. Mody, J. Pharm. Bioallied Sci. 2, 282 (2010).

    Google Scholar 

  9. Future Markets Inc., The Global Market for Metal Oxide Nanoparticles to 2020 (Research and Markets, Dublin, 2013).

    Google Scholar 

  10. J.A. Rodriguez, M. Fernandez-Garcia, Synthesis, Properties, and Applications of Oxide Nanomaterials (Wiley, Hoboken 2007), p. 718.

  11. M. Niederberger, G. Garnweitner, J. Buha, J. Polleux, J. Ba, N. Pinna, J. Sol-Gel Sci. Technol. 40, 259 (2006).

    Google Scholar 

  12. M. Niederberger, Acc. Chem. Res. 40, 793 (2007).

    Google Scholar 

  13. A.H. Lu, E.L. Salabas, F. Schuth, Angew. Chem. Int. Ed. Engl. 46, 1222 (2007).

    Google Scholar 

  14. S. Sun, H. Zeng, J. Am. Chem. Soc. 124, 8204 (2002).

    Google Scholar 

  15. V.K. LaMer, R.H. Dinegar, J. Am. Chem. Soc. 72, 4847 (1950).

    Google Scholar 

  16. M. Mahmoudi, H. Hofmann, B. Rothen-Rutishauser, A. Petri-Fink, Chem. Rev. 112, 2323 (2012).

    Google Scholar 

  17. A.J. Carterson, K. Höner zu Bentrup, C.M. Ott, M.S. Clarke, D.L. Pierson, C.R. Vanderburg, K.L. Buchanan, C.A. Nickerson, M.J. Schurr, Infect. Immun. 73, 1129 (2005).

    Google Scholar 

  18. E.L. Roggen, N.K. Soni, G.R. Verheyen, Toxicol. In Vitro 20, 1249 (2006).

    Google Scholar 

  19. G. Gstraunthaler, T. Hartung, in Cell Culture Models of Biological Barriers: In-Vitro Test Systems for Drug Absorption and Delivery, C.M. Lehr, Ed. (Taylor and Francis, New York, 2002), vol. 7, pp. 112–120.

  20. F.P. Gruber, T. Hartung, ALTEX 21 (Suppl. 1), 3 (2004).

  21. P.R. Wheather, H.G. Burkitt, V.G. Daniels, Functional Histology (Churchill Livingstone, Edinburgh, 1979), p. 348.

  22. B.W. Barry, Eur. J. Pharm. Sci. 14, 101 (2001).

    Google Scholar 

  23. M. Loden, H. Breitner, H. Gonzalez, D.W. Edstrom, U. Akerstrom, J. Austad, I. Buraczewska-Norin, M. Matsson, H.C. Wulf, Br. J. Dermatol. 165, 255 (2011).

    Google Scholar 

  24. V. Sharma, R.K. Shukla, N. Saxena, D. Parmar, M. Das, A. Dhawan, Toxicol. Lett. 185, 211 (2009).

    Google Scholar 

  25. P. Boukamp, R.T. Petrussevska, D. Breitkreutz, J. Hornung, A. Markham, N.E. Fusenig, J. Cell Biol. 106, 761 (1988).

    Google Scholar 

  26. C. Zanette, M. Pelin, M. Crosera, G. Adami, M. Bovenzi, F.F. Larese, C. Florio, Toxicol. In Vitro 25, 1053 (2011).

    Google Scholar 

  27. C. Xue, J. Wu, F. Lan, W. Liu, X. Yang, F. Zeng, H. Xu, J. Nanosci. Nanotechnol. 10, 8500 (2010).

    Google Scholar 

  28. X. Yang, J. Liu, H. He, L. Zhou, C. Gong, X. Wang, L. Yang, J. Yuan, H. Huang, L. He, B. Zhang, Z. Zhuang, Part. Fibre Toxicol. 7, 1 (2010).

    Google Scholar 

  29. R. Osborne, M.A. Perkins, Toxicol. in Vitro 5, 563 (1991).

    Google Scholar 

  30. http://www.mattek.com.

  31. http://www.loreal.com.

  32. Z. Kmiec, Adv. Anat. Embryol. Cell Biol. 161, III (2001).

    Google Scholar 

  33. M.J. Coon, X.X. Ding, S.J. Pernecky, A.D. Vaz, FASEB J. 6, 669 (1992).

    Google Scholar 

  34. A. Bhushan, N. Senutovitch, S.S. Bale, W.J. McCarty, M. Hegde, R. Jindal, I. Golberg, O. Berk Usta, M.L. Yarmush, L. Vernetti, A. Gough, A. Bakan, T. Shun, R. Biasio, D. Lansing Taylor, Stem Cell Res. Ther. 4 (Suppl. 1), S16 (2013).

  35. R. Kostadinova, F. Boess, D. Applegate, L. Suter, T. Wieser, T. Singer, B. Naughton, A. Roth, Toxicol. Appl. Pharmacol. 268, 1 (2013).

    Google Scholar 

  36. A. Kermanizadeh, G. Pojana, B.K. Gaiser, R. Birkedal, D. Bilanicova, H. Wallin, K.A. Jensen, B. Sellergren, G.R. Hutchison, A. Marcomini, V. Stone, Nanotoxicology 7, 301 (2013).

    Google Scholar 

  37. M.I. Hermanns, J. Kasper, P. Dubruel, C. Pohl, C. Uboldi, V. Vermeersch S. Fuchs, R.E. Unger, C.J. Kirkpatrick, J. R. Soc. Interface 7 (Suppl. 1), S41 (2010).

  38. B. Rothen-Rutishauser, F. Blank, C. Muhlfeld, P. Gehr, Expert Opin. Drug Metab. Toxicol. 4, 1075 (2008).

    Google Scholar 

  39. E. Alfaro-Moreno, T.S. Nawrot, B.M. Vanaudenaerde, M.F. Hoylaerts, J.A. Vanoirbeek, B. Nemery, P.H. Hoet, Eur. Respir. J. 32, 1184 (2008).

    Google Scholar 

  40. A.D. Lehmann, F. Blank, O. Baum, P. Gehr, B.M. Rothen-Rutishauser, Part. Fibre Toxicol. 6, 26 (2009).

    Google Scholar 

  41. L. Muller, M. Riediker, P. Wick, M. Mohr, P. Gehr, B. Rothen-Rutishauser, J. R. Soc. Interface 7 (Suppl. 1), S27 (2010).

  42. D. Huh, G.A. Hamilton, D.E. Ingber, Trends Cell Biol. 21, 745 (2011).

    Google Scholar 

  43. D. Huh, B.D. Matthews, A. Mammoto, M. Monotoya-Zavala, H.Y. Hsin, D.E. Ingber, Science 328, 1662 (2010).

    Google Scholar 

  44. D. Huh, D.C. Leslie, B.D. Matthews J.P. Fraser, S. Jurek, G.A. Hamilton K.S. Thorneloe, M.A. McAlexander, D.E. Ingber, Sci. Transl. Med. 4, 159ra147 (2012).

    Google Scholar 

  45. T. Buerki-Thurnherr, L. Xiao, L. Diener, O. Arslan, C. Hirsch, X. Maeder-Althaus, K. Grieder, B. Wampfler, S. Mathur, P. Wick, H.F. Krug, Nanotoxicology 7, 402 (2013).

    Google Scholar 

  46. S. Tuomela, R. Autio, T. Buerki-Thurnherr, O. Arslan, A. Kunzmann, B. Andersson-Willman, P. Wick, S. Mathur, A. Scheynius, H.F. Krug, B. Fadeel, R. Lahesmaa, PLoS One 8, e68415 (2013).

    Google Scholar 

  47. T. Xia, Y. Zhao, T. Sager, S. George, S. Pokhrel, N. Li, D. Schoenfeld, H. Meng, S. Lin, X. Wang, M. Wang, Z. Ji, J.I. Zink, L. Madler, V. Castranova, A.E. Nel, ACS Nano 2, 2121 (2008).

    Google Scholar 

  48. G.A. Orr, W.B. Chrisler, K.J. Cassens, R. Tan, B.J. Tarasevich, L.M. Markillie, R.C. Zangar, B.D. Thrall, Nanotoxicology 5, 296 (2010).

    Google Scholar 

  49. J.W. Park, T.B. Henry, S. Ard, F.M. Menn, R.N. Compton, G.S. Salyer, Nanotoxicology 5, 168 (2010).

    Google Scholar 

  50. A.C. Enders, T.N. Blankenship, Adv. Drug Deliv. Rev. 38, 3 (1999).

    Google Scholar 

  51. B.P. Lanphear, C.V. Vorhees, D.C. Bellinger, PLoS Med. 2, e61 (2005).

    Google Scholar 

  52. P. Latzin, M. Roosli, A. Huss, C.E. Kuehni, U. Frey, Eur. Respir. J. 33, 594 (2009).

    Google Scholar 

  53. V. Menezes, A. Malek, J.A. Keelan, Curr. Pharm. Biotechnol. 12, 731 (2011).

    Google Scholar 

  54. T. Buerki-Thurnherr, U. von Mandach, P. Wick, Swiss Med. Wkly. 142, w13559 (2012).

    Google Scholar 

  55. H. Schneider, M. Panigel, J. Dancis, Am. J. Obstet. Gynecol. 114, 822 (1972).

    Google Scholar 

  56. M. Panigel, M. Pascaud, J.L. Brun, J. Physiol. Paris 59, 277 (1967).

    Google Scholar 

  57. M. Saunders, Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 1, 671 (2009).

    Google Scholar 

  58. G. Bhabra, A. Sood, B. Fisher, L. Cartwright, M. Saunders, W.H. Evans, A. Surprenant, G. Lopez-Castejon, S. Mann, S.A. Davis, L.A. Hails, E. Ingham, P. Verkade, J. Lane, K. Heesom, R. Newson, C.P. Case, Nat. Nanotechnol. 4, 876 (2009).

    Google Scholar 

  59. M.C. Parry, G. Bhabra, A. Sood, F. Machado, L. Cartwright, M. Saunders, E. Ingham, R. Newson, A.W. Blom, C.P. Case, Biomaterials 31, 4477 (2010).

    Google Scholar 

  60. V. Zaga, G. Estrada-Guiterrez, J. Beltran-Montoya, R. Maida-Claros, R. Lopez-Vancell, F. Vadillo-Ortega, Biol. Reprod. 71, 1296 (2004).

    Google Scholar 

  61. C. Prouillac, S. Lecoeur, Drug Metab. Dispos. 38, 1623 (2010).

    Google Scholar 

  62. E.K. Sackmann, A.L. Fulton, D.J. Beebe, Nature 507, 181 (2014).

    Google Scholar 

  63. J.M. Kelm, V. Lorber, J.G. Snedeker, D. Schmidt, A. Broggini-Tenzer, M. Weisstanner, B. Odermatt, A. Mol, G. Zund, S.P. Hoerstrup, J. Biotechnol. 148, 46 (2010).

    Google Scholar 

  64. F. Tian, D. Razansky, G.G. Estrada, M. Semmler-Behnke, A. Beyerle, W. Kreyling, V. Ntziachristos, T. Stoeger, Inhal. Toxicol. 21 (Suppl. 1), 92 (2009).

  65. K. Yamashita, Y. Yoshioka, K. Higashisaka, Y. Morishita, T. Yoshida, M. Fujimura, H. Kayamuro, H. Nabeshi, T. Yamashita, K. Nagano, Y. Abe, H. Kamada, Y. Kawai, T. Mayumi, T. Yoshikawa, N. Itoh, S. Tsunoda, Y. Tsutsumi, Inflammation 33, 276 (2010).

    Google Scholar 

  66. M. Chu, Q. Wu, H. Yang, R. Yuan, S. Hou, Y. Yang, Y. Zou, S. Xu, K. Xu, A. Ji, L. Sheng, Small 6, 670 (2010).

    Google Scholar 

  67. A. Pietroiusti, M. Massimiani, I. Fenoglio, M. Colonna, F. Valentini, G. Palleschi, A. Camaioni, A. Magrini, G. Siracusa, A. Bergamaschi, A. Sgambato, L. Campagnolo, ACS Nano 5, 4624 (2011).

    Google Scholar 

  68. A. Pietroiusti, L. Campagnolo, B. Fadeel, Small 9, 1557 (2012).

    Google Scholar 

  69. M.J. Clift, P. Gehr, B. Rothen-Rutishauser, Arch. Toxicol. (2010).

  70. M. Mahmoudi, M.A. Sahraian, M.A. Shokrgozar, S. Laurent, ACS Chem. Neurosci. 2 (3), 118 (2011).

    Google Scholar 

Download references

Acknowledgements

This work was financially supported by the Swiss National Foundation (Grants No. 320030, 138365, 150737, NRP 64 program, grant no 4064–131232), the Research fund of the Swiss Lung Association, Berne, the Adolphe Merkle Foundation, and the European Union Seventh Framework Program (FP 7) under grant agreement 309329 (Nanosolutions).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter Wick.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wick, P., Grafmueller, S., Petri-Fink, A. et al. Advanced human in vitro models to assess metal oxide nanoparticle-cell interactions. MRS Bulletin 39, 984–989 (2014). https://doi.org/10.1557/mrs.2014.219

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/mrs.2014.219

Navigation