Skip to main content
Log in

Nanogaps for SERS applications

  • Technical Feature
  • Published:
MRS Bulletin Aims and scope Submit manuscript

Abstract

The nanogap is possibly the single most important physical entity in surface-enhanced Raman scattering. Nanogaps between noble metal nanostructures deliver extremely high electric field-enhancement, resulting in an extraordinary amplification of both the excitation rate and the emission rate of Raman active molecules situated in the gap. In some cases, the resulting surface-enhancement in the gap can be so high that Raman spectra from single molecules can be measured. Here, we briefly review some important concepts and experimental results on nanoscale gaps for SERS applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. G. Haran, Acc. Chem. Res. 43, 1135 (2010).

    Google Scholar 

  2. D.R. Ward, N.K. Grady, C.S. Levin, N.J. Halas, Y.P. Wu, P. Nordlander, D. Natelson, Nano Lett. 7, 1396 (2007).

    Google Scholar 

  3. K.A. Willets, R.P. Van Duyne, Annu. Rev. Phys. Chem. 58, 267 (2007).

    Google Scholar 

  4. D.K. Lim, K.S. Jeon, H.M. Kim, J.M. Nam, Y.D. Suh, Nat. Mater. 9, 60 (2010).

    Google Scholar 

  5. T. Hanke, J. Cesar, V. Knittel, A. Trugler, U. Hohenester, A. Leitenstorfer, R. Bratschitsch, Nano Lett. 12, 992 (2012).

    Google Scholar 

  6. M. Abb, P. Albella, J. Aizpurua, O.L. Muskens, Nano Lett. 11, 2457 (2011).

    Google Scholar 

  7. A.N. Grigorenko, N.W. Roberts, M.R. Dickinson, Y. Zhang, Nat. Photonics 2, 365 (2008).

    Google Scholar 

  8. W.H. Zhang, L.N. Huang, C. Santschi, O.J.F. Martin, Nano Lett. 10, 1006 (2010).

    Google Scholar 

  9. L. Novotny, N.V. Hulst, Nat. Photonics 5, 83 (2011).

    Google Scholar 

  10. P. Biagioni, J.-S. Huang, B. Hecht, Rep. Prog. Phys. 75, 024402 (2012).

    Google Scholar 

  11. S. Kim, J. Jin, Y.-J. Kim, I.-Y. Park, Y. Kim, S.-W. Kim, Nature 453, 757 (2008).

    Google Scholar 

  12. H.X. Xu, J. Aizpurua, M. Käll, P. Apell, Phys. Rev. E 62, 4318 (2000).

    Google Scholar 

  13. G.C. Schatz, M.A. Young, R.P. Van Duyne, Top. Appl. Phys. 103, 19 (2006).

    Google Scholar 

  14. H.X. Xu, E.J. Bjerneld, M. Käll, L. Borjesson, Phys. Rev. Lett. 83, 4357 (1999).

    Google Scholar 

  15. S.M. Nie, S.R. Emery, Science 275, 1102 (1997).

    Google Scholar 

  16. K. Kneipp, Y. Wang, H. Kneipp, L.T. Perelman, I. Itzkan, R. Dasari, M.S. Feld, Phys. Rev. Lett. 78, 1667 (1997).

    Google Scholar 

  17. N.P.W. Pieczonka, R.F. Aroca, Chem. Soc. Rev. 37, 946 (2008).

    Google Scholar 

  18. L. Gunnarsson, T. Rindzevicius, J. Prikulis, B. Kasemo, M. Käll, S.L. Zou, G.C. Schatz, J. Phys. Chem. B 109, 1079 (2005).

    Google Scholar 

  19. C. Tabor, R. Murali, M. Mahmoud, M.A. El-Sayed, J. Phys. Chem. A 113, 1946 (2009).

    Google Scholar 

  20. K.J. Savage, M.M. Hawkeye, R. Esteban, A.G. Borisov, J. Aizpurua, J.J. Baumberg, Nature 491, 574 (2012).

    Google Scholar 

  21. C. Ciracì, R.T. Hill, J.J. Mock, Y. Urzhumov, A.I. Fernández-Domínguez, S.A. Maier, J.B. Pendry, A. Chilkoti, D.R. Smith, Science 337, 1072 (2012).

    Google Scholar 

  22. J.A. Scholl, A.L. Koh, J.A. Dionne, Nature 483, 421 (2012).

    Google Scholar 

  23. H.X. Xu, E.J. Bjerneld, J. Aizpurua, P. Apell, L. Gunnarsson, S. Petronis, B. Kasemo, C. Larsson, F. Höök, M. Käll, Proc. SPIE 4258, 35 (2001).

    Google Scholar 

  24. P.K. Jain, W.Y. Huang, M.A. El-Sayed, Nano Lett. 7, 2080 (2007).

    Google Scholar 

  25. S.K. Ghosh, T. Pal, Chem. Rev. 107, 4797 (2007).

    Google Scholar 

  26. J.M. McMahon, S.Z. Li, L.K. Ausman, G.C. Schatz, J. Phys. Chem. C 116, 1627 (2012).

    Google Scholar 

  27. M. Moskovits, Rev. Mod. Phys. 57, 783 (1985).

    Google Scholar 

  28. H. Metiu, P. Das, Annu. Rev. Phys. Chem. 35, 507 (1984).

    Google Scholar 

  29. M. Kerker, Acc. Chem. Res. 17, 271 (1984).

    Google Scholar 

  30. L. Gunnarsson, E.J. Bjerneld, H. Xu, S. Petronis, B. Kasemo, M. Käll, Appl. Phys. Lett. 78, 802 (2001).

    Google Scholar 

  31. M. Meyer, E.C. Le Ru, P.G. Etchegoin, J. Phys. Chem. B 110, 6040 (2006).

    Google Scholar 

  32. L.V. Brown, H. Sobhani, J.B. Lassiter, P. Nordlander, N.J. Halas, ACS Nano 4, 819 (2010).

    Google Scholar 

  33. E. Hao, G.C. Schatz, J. Chem. Phys. 120, 357 (2004).

    Google Scholar 

  34. K.D. Alexander, K. Skinner, S.P. Zhang, H. Wei, R. Lopez, Nano Lett. 10, 4488 (2010).

    Google Scholar 

  35. T. Shegai, B. Brian, V.D. Miljkovic, M. Käll, ACS Nano 5, 2036 (2011).

    Google Scholar 

  36. T. Shegai, S. Chen, V.D. Miljkovic, G. Zengin, P. Johansson, M. Käll, Nat. Commun. 2, 481 (2011).

    Google Scholar 

  37. Z.P. Li, T. Shegai, G. Haran, H.X. Xu, ACS Nano 3, 637 (2009).

    Google Scholar 

  38. K.L. Wustholz, A.I. Henry, J.M. McMahon, R.G. Freeman, N. Valley, M.E. Piotti, M.J. Natan, G.C. Schatz, R.P. Van Duyne, J. Am. Chem. Soc. 132, 10903 (2010).

    Google Scholar 

  39. T. Shegai, Z.P. Li, T. Dadosh, Z.Y. Zhang, H.X. Xu, G. Haran, Proc. Natl. Acad. Sci. U.S.A. 105, 16448 (2008).

    Google Scholar 

  40. R.W. Taylor, T.C. Lee, O.A. Scherman, R. Esteban, J. Aizpurua, F.M. Huang, J.J. Baumberg, S. Mahajan, ACS Nano 5, 3878 (2011).

    Google Scholar 

  41. R. Esteban, R.W. Taylor, J.J. Baumberg, J. Aizpurua, Langmuir 28, 8881 (2012).

    Google Scholar 

  42. J. Kneipp, H. Kneipp, M. McLaughlin, D. Brown, K. Kneipp, Nano Lett. 6, 2225 (2006).

    Google Scholar 

  43. L.S. Slaughter, B.A. Willingham, W.S. Chang, M.H. Chester, N. Ogden, S. Link, Nano Lett. 12, 3967 (2012).

    Google Scholar 

  44. F. Svedberg, Z.P. Li, H.X. Xu, M. Käll, Nano Lett. 6, 2639 (2006).

    Google Scholar 

  45. S.J. Barrow, X. Wei, J.S. Baldauf, A.M. Funston, P. Mulvaney, Nat. Commun. 3, 1275 (2012).

    Google Scholar 

  46. J. Prikulis, F. Svedberg, M. Käll, J. Enger, K. Ramser, M. Goksor, D. Hanstorp, Nano Lett. 4, 115 (2004).

    Google Scholar 

  47. L.M. Tong, V.D. Miljkovic, P. Johansson, M. Käll, Nano Lett. 11, 4505 (2011).

    Google Scholar 

  48. A.S. Urban, A.A. Lutich, F.D. Stefani, J. Feldmann, Nano Lett. 10, 4794 (2010).

    Google Scholar 

  49. V.D. Miljkovic, T. Pakizeh, B. Sepulveda, P. Johansson, M. Käll, J. Phys. Chem. C 114, 7472 (2010).

    Google Scholar 

  50. Z.P. Li, M. Käll, H. Xu, Phys. Rev. B 77, 085412 (2008).

    Google Scholar 

  51. L.M. Tong, M. Righini, M.U. Gonzalez, R. Quidant, M. Käll, Lab Chip 9, 193 (2009).

    Google Scholar 

  52. H. Wei, F. Hao, Y.Z. Huang, W.Z. Wang, P. Nordlander, H.X. Xu, Nano Lett. 8, 2497 (2008).

    Google Scholar 

  53. H. Wei, U. Hakanson, Z.L. Yang, F. Höök, H.X. Xu, Small 4, 1296 (2008).

    Google Scholar 

  54. Y.R. Fang, H. Wei, F. Hao, P. Nordlander, H.X. Xu, Nano Lett. 9, 2049 (2009).

    Google Scholar 

  55. J. Theiss, P. Pavaskar, P.M. Echternach, R.E. Muller, S.B. Cronin, Nano Lett. 10, 2749 (2010).

    Google Scholar 

  56. J.A. Hutchison, S.P. Centeno, H. Odaka, H. Fukumura, J. Hofkens, H. Uji-i, Nano Lett. 9, 995 (2009).

    Google Scholar 

  57. J.H. Tian, B. Liu, X.L. Li, Z.L. Yang, B. Ren, S.T. Wu, N.J. Tao, Z.Q. Tian, J. Am. Chem. Soc. 128, 14748 (2006).

    Google Scholar 

  58. J.M. Baik, S.J. Lee, M. Moskovits, Nano Lett. 9, 672 (2009).

    Google Scholar 

  59. J.B. Herzog, M.W. Knight, Y.J. Li, K.M. Evans, N.J. Halas, D. Natelson, Nano Lett. 13, 1359 (2013).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lianming Tong.

Additional information

This article complements the August 2013 issue of MRS Bulletin on SERS substrates and materials.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tong, L., Xu, H. & Käll, M. Nanogaps for SERS applications. MRS Bulletin 39, 163–168 (2014). https://doi.org/10.1557/mrs.2014.2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/mrs.2014.2

Navigation