Skip to main content
Log in

Two-dimensional materials for electronic applications

  • New Materials for Post-Si Computing
  • Published:
MRS Bulletin Aims and scope Submit manuscript

Abstract

This article reviews the potential of graphene and related two-dimensional (2D) materials for applications in micro- and nanoelectronics. In addition to graphene, special emphasis is placed on transition metal dichalcogenides (TMDs). First, we discuss potential solutions for application-scale material growth, in particular chemical vapor deposition. We describe challenges for electrical contacts and dielectric interfaces with 2D materials. The device-related sections in this review first weigh the pros and cons of semi-metal graphene as a field-effect transistor (FET) channel material for logic and radio frequency applications. This is followed by an introduction to alternate graphene switch concepts that utilize the particular properties of the material, namely tunnel FETs, vertical devices, and bilayer pseudospin FETs. The final section is dedicated to semiconducting TMDs and their integration in FETs using the examples ofn-type molybdenum disulfide (MoS2) andp-type tungsten diselenide (WSe2).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigorieva, A.A. Firsov, Science 306, 666 (2004).

    Google Scholar 

  2. C. Berger, Z.M. Song, T.B. Li, X.B. Li, A.Y. Ogbazghi, R. Feng, Z.T. Dai, A.N. Marchenkov, E.H. Conrad, P.N. First, W.A. de Heer, J. Phys. Chem. B 108, 19912 (2004).

    Google Scholar 

  3. Y. Wu, D.B. Farmer, F. Xia, P. Avouris, Proc. IEEE 101, 1620 (2013).

    Google Scholar 

  4. F. Bonaccorso, Z. Sun, T. Hasan, A.C. Ferrari, Nat. Photonics 4, 611 (2010).

    Google Scholar 

  5. C. Chen, J. Hone, Proc. IEEE 101, 1766 (2013).

    Google Scholar 

  6. K.I. Bolotin, K.J. Sikes, Z. Jiang, M. Klima, G. Fudenberg, J. Hone, P. Kim, H.L. Stormer, Solid State Commun. 146, 351 (2008).

    Google Scholar 

  7. R. Murali, Y. Yang, K. Brenner, T. Beck, J.D. Meindl, Appl. Phys. Lett. 94, 243114 (2009).

    Google Scholar 

  8. R.R. Nair, P. Blake, A.N. Grigorenko, K.S. Novoselov, T.J. Booth, T. Stauber, N.M.R. Peres, A.K. Geim, Science 320, 1308 (2008).

    Google Scholar 

  9. C. Lee, X. Wei, J.W. Kysar, J. Hone, Science 321, 385 (2008).

    Google Scholar 

  10. A.A. Balandin, S. Ghosh, W. Bao, I. Calizo, D. Teweldebrhan, F. Miao, C.N. Lau, Nano Lett. 8, 902 (2008).

    Google Scholar 

  11. S. Vaziri, G. Lupina, A. Paussa, A.D. Smith, C. Henkel, G. Lippert, J. Dabrowski, W. Mehr, M. Östling, M.C. Lemme, Solid State Electron. 84, 185 (2013).

    Google Scholar 

  12. L.F. Mattheiss, Phys. Rev. B: Condens. Matter 8, 3719 (1973).

    Google Scholar 

  13. A. Kuc, N. Zibouche, T. Heine, Phys. Rev. B: Condens. Matter 83, 245213 (2011).

    Google Scholar 

  14. H. Liu, A.T. Neal, Z. Zhu, Z. Luo, X. Xu, D. Tománek, P.D. Ye, ACS Nano 8, 4033 (2014).

    Google Scholar 

  15. L. Li, Y. Yu, G.J. Ye, Q. Ge, X. Ou, H. Wu, D. Feng, X.H. Chen, Y. Zhang, Cond-Mat (2014); http://arxiv.org/abs/1401.4117.

    Google Scholar 

  16. W.S. Leong, H. Gong, J.T.L. Thong, ACS Nano 8, 994 (2014).

    Google Scholar 

  17. J.S. Moon, M. Antcliffe, H.C. Seo, D. Curtis, S. Lin, A. Schmitz, I. Milosavljevic, A.A. Kiselev, R.S. Ross, D.K. Gaskill, Appl. Phys. Lett. 100, 203512 (2012).

    Google Scholar 

  18. H. Wang, T. Taychatanapat, A. Hsu, K. Watanabe, T. Taniguchi, P. Jarillo-Herrero, T. Palacios, IEEE Electron Devices Lett. 32, 1209 (2011).

    Google Scholar 

  19. Q. Yu, J. Lian, S. Siriponglert, H. Li, Y.P. Chen, S.-S. Pei, Appl. Phys. Lett. 93, 113103 (2008).

    Google Scholar 

  20. X. Li, W. Cai, J. An, S. Kim, J. Nah, D. Yang, R. Piner, A. Velamakanni, I. Jung, E. Tutuc, S.K. Banerjee, L. Colombo, R.S. Ruoff, Science 324, 1312 (2009).

    Google Scholar 

  21. A. Reina, X. Jia, J. Ho, D. Nexich, H. Son, V. Bulovic, M. Dresselhaus, J. Kong, Nano Lett. 9, 30 (2009).

    Google Scholar 

  22. C. Mattevi, H. Kim, M. Chhowalla, J. Mater. Chem. 21, 3324 (2011).

    Google Scholar 

  23. Y.-H. Lee, X.-Q. Zhang, W. Zhang, M.-T. Chang, C.-T. Lin, K.-D. Chang, Y.-C. Yu, J.T.-W. Wang, C.-S. Chang, L.-J. Li, T.-W. Lin, Adv. Mater. 24, 2320 (2012).

    Google Scholar 

  24. Y. Zhan, Z. Liu, S. Najmaei, P.M. Ajayan, J. Lou, Small 8, 966 (2012).

    Google Scholar 

  25. J.-K. Huang, J. Pu, C.-L. Hsu, M.-H. Chiu, Z.-Y. Juang, Y.-H. Chang, W.-H. Chang, Y. Iwasa, T. Takenobu, L.-J. Li, ACS Nano 8, 923 (2014).

    Google Scholar 

  26. J. Kang, D. Shin, S. Bae, B.H. Hong, Nanoscale 4 (18), 5527 (2012).

    Google Scholar 

  27. T. Kobayashi, M. Bando, N. Kimura, K. Shimizu, K. Kadono, N. Umezu, K. Miyahara, S. Hayazaki, S. Nagai, Y. Mizuguchi, Y. Murakami, D. Hobara, Appl. Phys. Lett. 102, 023112 (2013).

    Google Scholar 

  28. S. Bae, H. Kim, Y. Lee, X. Xu, J.-S. Park, Y. Zheng, J. Balakrishnan, T. Lei, H. Ri Kim, Y.I. Song, Y.-J. Kim, K.S. Kim, B. Ozyilmaz, J.-H. Ahn, B.H. Hong, S. Iijima, Nat. Nano 5, 574 (2010).

    Google Scholar 

  29. G. Wang, M. Zhang, Y. Zhu, G. Ding, D. Jiang, Q. Guo, S. Liu, X. Xie, P.K. Chu, Z. Di, X. Wang, Sci. Rep. 3, 2465 (2013).

    Google Scholar 

  30. G. Lippert, J. Dabrowski, T. Schroeder, M.A. Schubert, Y. Yamamoto, F. Herziger, J. Maultzsch, J. Baringhaus, C. Tegenkamp, M.C. Arsensio, J. Avila, G. Lupina, Carbon 75, 104 (2014).

    Google Scholar 

  31. J.-H. Lee, E.K. Lee, W.-J. Joo, Y. Jang, B.-S. Kim, J.Y. Lim, S.-H. Choi, S.J. Ahn, J.R. Ahn, M.-H. Park, C.W. Yang, B.L. Choi, S.-W. Hwang, D. Whang, Science (2014), doi: 10.1126/science.1252268.

    Google Scholar 

  32. A.T. Neal, H. Liu, J.J. Gu, P.D. Ye, in Device Research Conference, 70th Annual 65 (IEEE, 2012).

    Google Scholar 

  33. F. Xia, V. Perebeinos, Y. Lin, Y. Wu, P. Avouris, Nat. Nanotechnol. 6, 179 (2011).

    Google Scholar 

  34. K. Nagashio, A. Toriumi, Jpn. J. Appl. Phys. 50, 0108 (2011).

    Google Scholar 

  35. B. Huard, N. Stander, J.A. Sulpizio, D. Goldhaber-Gordon, Phys. Rev. B: Condens. Matter 78, 121402 (2008).

    Google Scholar 

  36. A.D. Franklin, S.-J. Han, A.A. Bol, W. Haensch, IEEE Electron Devices Lett. 32, 1035 (2011).

    Google Scholar 

  37. K. Nagashio, T. Nishimura, K. Kita, A. Toriumi, Int. Electron Devices Meeting 1–4 (2009).

    Google Scholar 

  38. O. Balci, C. Kocabas, Appl. Phys. Lett. 101, 243105 (2012).

    Google Scholar 

  39. C.E. Malec, B. Elkus, D. Davidović, Solid State Commun. 151, 1791 (2011).

    Google Scholar 

  40. W. Li, C.A. Hacker, G. Cheng, Y. Liang, B. Tian, A.H. Walker, C.A. Richter, D.J. Gundlach, X. Liang, L. Peng, J. Appl. Phys. 115, 114304 (2014).

    Google Scholar 

  41. A.D. Franklin, S.-J. Han, A.A. Bol, V. Perebeinos, IEEE Electron Devices Lett. 33, 17 (2012).

    Google Scholar 

  42. Y. Matsuda, W.-Q. Deng, W.A. Goddard III, J. Phys. Chem. C 114, 17845 (2010).

    Google Scholar 

  43. J.T. Smith, A.D. Franklin, D.B. Farmer, C.D. Dimitrakopoulos, ACS Nano 7, 3661 (2013).

    Google Scholar 

  44. International Technology Roadmap for Semiconductors, Emerging Research Devices (2013); http://www.itrs.net.

  45. X. Li, X. Wang, L. Zhang, S. Lee, H. Dai, Science 319, 1229 (2008).

    Google Scholar 

  46. E.V. Castro, K.S. Novoselov, S.V. Morozov, N.M.R. Peres, J.M.B.L. dos Santos, J. Nilsson, F. Guinea, A.K. Geim, A.H. Castro-Neto, Phys. Rev. Lett. 99, 216802 (2007).

    Google Scholar 

  47. S.O. Koswatta, A. Valdes-Garcia, M.B. Steiner, Y.-M. Lin, P. Avouris, IEEE Trans. Microw. Theory Tech. 59 (10), (2011).

    Google Scholar 

  48. I. Meric, P. Baklitskaya, P. Kim, K. Shepard, Int. Electron Devices Meeting 1–4 (2008).

    Google Scholar 

  49. R. Cheng, J. Bai, L. Liao, H. Zhou, Y. Chen, L. Liu, Y.-C. Lin, S. Jiang, Y. Huang, X. Duan, Proc. Natl. Acad. Sci. U.S.A. 109, 11588 (2012).

    Google Scholar 

  50. Y. Wu, A. Jenkins, A. Valdes-Garcia, D.B. Farmer, Y. Zhu, A.A. Bol, C. Dimitrakopoulos, W. Zhu, F. Xia, P. Avouris, Y.-M. Lin, Nano Lett. 12, 3062 (2012).

    Google Scholar 

  51. Z. Guo, R. Dong, P.S. Chakraborty, N. Lourenco, J. Palmer, Y. Hu, M. Ruan, J. Hankinson, J. Kunc, J.D. Cressler, C. Berger, W.A. de Heer, Nano Lett. 13 (3), 942 (2013).

    Google Scholar 

  52. Z.H. Feng, C. Yu, J. Li, Q.B. Liu, Z.Z. He, X.B. Song, J.J. Wang, S.J. Cai, Carbon 75, 249 (2014).

    Google Scholar 

  53. F. Schwierz, Proc. IEEE 101, 1567 (2013).

    Google Scholar 

  54. S. Das, J. Appenzeller, IEEE Trans. Nanotechnol. 10, 1093 (2011).

    Google Scholar 

  55. B.N. Szafranek, G. Fiori, D. Schall, D. Neumaier, H. Kurz, Nano Lett. 12, 1324 (2012).

    Google Scholar 

  56. G. Fiori, G. Iannaccone, Tech. Dig. IEDM 403 (2012).

    Google Scholar 

  57. H. Wang, A. Hsu, K.K. Kim, J. Kong, T. Palacios, Int. Electron Devices Meeting 23.6.1 (2010).

    Google Scholar 

  58. H. Wang, A. Hsu, J. Wu, J. Kong, T. Palacios, IEEE Electron Devices Lett. 31, 906 (2010).

    Google Scholar 

  59. S.-J. Han, A. Valdes Garcia, S. Oida, K.A. Jenkins, W. Haensch, Int. Electron Devices Meeting 19.9.1 (2013).

    Google Scholar 

  60. S.A. Thiele, J.A. Schaefer, F. Schwierz, J. Appl. Phys. 107, 094505 (2010).

    Google Scholar 

  61. H. Wang, A. Hsu, J. Kong, D.A. Antoniadis, T. Palacios, IEEE Trans. Electron Devices 58, 1523 (2011).

    Google Scholar 

  62. S. Rodriguez, S. Vaziri, A. Smith, S. Fregonese, M. Ostling, M.C. Lemme, A. Rusu, IEEE Trans. Electron Devices 61 (4), 1199 (2014).

    Google Scholar 

  63. A.M. Ionescu, H. Riel, Nature 479, 329 (2011).

    Google Scholar 

  64. G. Iannaccone, G. Fiori, M. Macucci, P. Michetti, M. Cheli, A. Betti, P. Marconcini, Int. Electron Devices Meeting 1–4 (2009).

    Google Scholar 

  65. M. Luisier, G. Klimeck, Appl. Phys. Lett. 94, 223505 (2009).

    Google Scholar 

  66. G. Fiori, G. Iannaccone, IEEE Electron Devices Lett. 30, 1096 (2009).

    Google Scholar 

  67. D. Jena, Proc. IEEE 101, 1585 (2013).

    Google Scholar 

  68. H. Yang, J. Heo, S. Park, H.J. Song, D.H. Seo, K.-E. Byun, P. Kim, I. Yoo, H.-J. Chung, K. Kim, Science 336, 1140 (2012).

    Google Scholar 

  69. L. Britnell, R.V. Gorbachev, R. Jalil, B.D. Belle, F. Schedin, A. Mishchenko, T. Georgiou, M.I. Katsnelson, L. Eaves, S.V. Morozov, N.M.R. Peres, J. Leist, A.K. Geim, K.S. Novoselov, L.A. Ponomarenko, Science 335, 947 (2012).

    Google Scholar 

  70. W. Mehr, J.C. Scheytt, J. Dabrowski, G. Lippert, Y.-H. Xie, M.C. Lemme, M. Ostling, G. Lupina, IEEE Electron Devices Lett. 33, 691 (2012).

    Google Scholar 

  71. S. Vaziri, G. Lupina, C. Henkel, A.D. Smith, M. Östling, J. Dabrowski, G. Lippert, W. Mehr, M.C. Lemme, Nano Lett. 13, 1435 (2013).

    Google Scholar 

  72. C. Zeng, E.B. Song, M. Wang, S. Lee, C.M. Torres, J. Tang, B.H. Weiller, K.L. Wang, Nano Lett. 13, 2370 (2013).

    Google Scholar 

  73. L. Britnell, R.V. Gorbachev, A.K. Geim, L.A. Ponomarenko, A. Mishchenko, M.T. Greenaway, T.M. Fromhold, K.S. Novoselov, L. Eaves, Nat. Commun. 4, 1794 (2013).

    Google Scholar 

  74. P. Zhao, R.M. Feenstra, G. Gu, D. Jena, Device Research Conference, 2012 70th Annual (2012), pp. 33–34.

  75. H. Min, R. Bistritzer, J.-J. Su, A.H. MacDonald, Phys. Rev. B: Condens. Matter 78, 121401 (2008).

    Google Scholar 

  76. S.K. Banerjee, L.F. Register, E. Tutuc, D. Reddy, A.H. MacDonald, IEEE Electron Devices Lett. 30, 158 (2009).

    Google Scholar 

  77. C.-H. Zhang, Y.N. Joglekar, Phys. Rev. B: Condens. Matter 77, 233405 (2008).

    Google Scholar 

  78. D. Reddy, L.F. Register, E. Tutuc, S.K. Banerjee, IEEE Trans. Electron Devices 57, 755 (2010).

    Google Scholar 

  79. I. Sodemann, D.A. Pesin, A.H. MacDonald, Phys. Rev. B: Condens. Matter 85, 195136 (2012).

    Google Scholar 

  80. M.Y. Kharitonov, K.B. Efetov, Semicond. Sci. Technol. 25, 034004 (2010).

    Google Scholar 

  81. Y.F. Suprunenko, V. Cheianov, V.I. Fal’ko, Phys. Rev. B: Condens. Matter 86, 155405 (2012).

    Google Scholar 

  82. D. Basu, L.F. Register, D. Reddy, A.H. MacDonald, S.K. Banerjee, Phys. Rev. B: Condens. Matter 82, 075409 (2010).

    Google Scholar 

  83. L.F. Register, X. Mou, D. Reddy, W. Jung, I. Sodemann, D. Pesin, A. Hassibi, A.H. MacDonald, S.K. Banerjee, ECS Trans. 45, 3 (2012).

    Google Scholar 

  84. M.J. Gilbert, IEEE Trans. Electron Devices 57, 3059 (2010).

    Google Scholar 

  85. B. Dellabetta, M.J. Gilbert, Device Research Conference, 2011 69th Annual, 65 (2011).

    Google Scholar 

  86. K. Bernstein, R.K. Cavin, W. Porod, A. Seabaugh, J. Welser, Proc. IEEE 98, 2169 (2010).

    Google Scholar 

  87. D.E. Nikonov, I.A. Young, Proc. IEEE 101, 2498 (2013).

    Google Scholar 

  88. K.S. Novoselov, D. Jiang, F. Schedin, T.J. Booth, V.V. Khotkevich, S.V. Morozov, A.K. Geim, Proc. Natl. Acad. Sci. U.S.A. 102, 10451 (2005).

    Google Scholar 

  89. B. Radisavljevic, A. Radenovic, J. Brivio, V. Giacometti, A. Kis, Nat. Nanotechnol. 6, 147 (2011).

    Google Scholar 

  90. H. Wang, L. Yu, Y.-H. Lee, Y. Shi, A. Hsu, M.L. Chin, L.-J. Li, M. Dubey, J. Kong, T. Palacios, Nano Lett. 12, 4674 (2012).

    Google Scholar 

  91. H. Wang, L. Yu, Y. Lee, W. Fang, A. Hsu, P. Herring, M. Chin, M. Dubey, L. Li, J. Kong, T. Palacios, Int. Electron Devices Meeting 4.6.1 (2012).

    Google Scholar 

  92. H. Fang, S. Chuang, T.C. Chang, K. Takei, T. Takahashi, A. Javey, Nano Lett. 12, 3788 (2012).

    Google Scholar 

  93. D.J. Frank, Y. Taur, H.S.P. Wong, IEEE Electron Devices Lett. 19, 385 (1998).

    Google Scholar 

  94. K. Uchida, J. Koga, S. Takagi, Tech. Dig. Int. Electron Devices Meeting 33.5.1 (2003).

    Google Scholar 

  95. M. Schmidt, M.C. Lemme, H.D.B. Gottlob, F. Driussi, L. Selmi, H. Kurz, Solid State Electron. 53, 1246 (2009).

    Google Scholar 

  96. G.-H. Lee, Y.-J. Yu, X. Cui, N. Petrone, C.-H. Lee, M.S. Choi, D.-Y. Lee, C. Lee, W.J. Yoo, K. Watanabe, ACS Nano 7, 7931 (2013).

    Google Scholar 

  97. J. Yoon, W. Park, G.-Y. Bae, Y. Kim, H.S. Jang, Y. Hyun, S.K. Lim, Y.H. Kahng, W.-K. Hong, B.H. Lee, Small 9, 3295 (2013).

    Google Scholar 

  98. Z. Yin, H. Li, H. Li, L. Jiang, Y. Shi, Y. Sun, G. Lu, Q. Zhang, X. Chen, H. Zhang, ACS Nano 6, 74 (2012).

    Google Scholar 

  99. T. Mueller, F. Xia, P. Avouris, Nat. Photonics 4, 297 (2010).

    Google Scholar 

  100. A. Pospischil, M. Humer, M.M. Furchi, D. Bachmann, R. Guider, T. Fromherz, T. Mueller, Nat. Photonics 7, 892 (2013).

    Google Scholar 

  101. M.C. Lemme, F.H.L. Koppens, A.L. Falk, M.S. Rudner, H. Park, L.S. Levitov, C.M. Marcus, Nano Lett. 11, 4134 (2011).

    Google Scholar 

  102. J.S. Bunch, A.M. van der Zande, S.S. Verbridge, I.W. Frank, D.M. Tanenbaum, J.M. Parpia, H.G. Craighead, P.L. McEuen, Science 315, 490 (2007).

    Google Scholar 

  103. A.D. Smith, F. Niklaus, A. Paussa, S. Vaziri, A.C. Fischer, M. Sterner, F. Forsberg, A. Delin, D. Esseni, P. Palestri, M. Östling, M.C. Lemme, Nano Lett. 13, 3237 (2013).

    Google Scholar 

  104. F. Schedin, A.K. Geim, S.V. Morozov, E.W. Hill, P. Blake, M.I. Katsnelson, K.S. Novoselov, Nat. Mater. 6, 652 (2007).

    Google Scholar 

  105. L.H. Hess, M. Seifert, J.A. Garrido, Proc. IEEE 101, 1780 (2013).

    Google Scholar 

  106. F. Schwierz, Nat. Nanotechnol. 5, 487 (2010).

    Google Scholar 

  107. F. Schwierz, Nature 472, 41 (2011).

    Google Scholar 

Download references

Acknowledgments

M.L. acknowledges support from the European Commission through a STREP project (GRADE, No. 317839), an ERC Starting Grant (InteGraDe, No. 307311), as well as the German Research Foundation (DFG, LE 2440/1–1 and 2–1). L.J.L. thanks the support from Academia Sinica and National Science Council Taiwan (102–2119-M-001–005). F.S. acknowledges financial support from the Excellence Research Grant and the Intra-Faculty Research Grant of TU Ilmenau and from DFG (SCHW 729/16–1). F.S. would like to thank A.H. MacDonald for fruitful discussions on BiSFETs. T.P. would like to thank the partial funding support of the ONR PECASE program. All authors thank Stefan Wagner for support with the artwork of the figures.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Max C. Lemme.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lemme, M.C., Li, LJ., Palacios, T. et al. Two-dimensional materials for electronic applications. MRS Bulletin 39, 711–718 (2014). https://doi.org/10.1557/mrs.2014.138

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/mrs.2014.138

Navigation