Skip to main content
Log in

Recent progress with multicompartmental nanoparticles

  • Organic Nanoparticles for Drug Delivery and Imaging
  • Published:
MRS Bulletin Aims and scope Submit manuscript

Abstract

This article highlights recent trends and challenges in the area of multicompartmental nanoparticles and focuses on the use of electrohydrodynamic co-jetting for preparing multicompartmental particles, fibers, and cylinders. There are many excellent reviews that have focused on various methods for the fabrication of anisotropic multifunctional particles and fibers and their respective advantages and disadvantages. In this article, we highlight recent developments in the electrohydrodynamic co-jetting approach used for the fabrication of nano- and microparticles and fibers with multifunctional characteristics. A particular focus is given to the use of this technology to control particle size and shape.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. S. Jiang, S. Granick, Janus Particle Synthesis, Self-Assembly, and Applications (RSC Publishing, London, 2012).

  2. M. Grzelczak, J. Vermant, E.M. Furst, L.M. Liz-Marzán, ACS Nano 4, 3591 (2010).

    Google Scholar 

  3. S.C. Glotzer, M.J. Solomon, N.A. Kotov, AIChE J. 50, 2978 (2004).

    Google Scholar 

  4. T.H. Park, J. Lahann, in Janus Particle Synthesis, Self-Assembly, and Applications, S. Jiang, S. Granick, Eds. (RSC Publishing, London, 2012).

  5. S.C. Glotzer, M.J. Solomon, Nat. Mater. 6, 557 (2007).

    Google Scholar 

  6. S.M. Yang, S.H. Kim, J.M. Lim, G.R. Yi, J. Mater. Chem. 18, 2177 (2008).

    Google Scholar 

  7. A. Walther, A.H.E. Muller, Soft Matter 4, 663 (2008).

    Google Scholar 

  8. S. Mitragotri, J. Lahann, Nat. Mater. 8, 15 (2009).

    Google Scholar 

  9. D. Dendukuri, P.S. Doyle, Adv. Mater. 21, 4071 (2009).

    Google Scholar 

  10. J. Yoon, K.J. Lee, J. Lahann, J. Mater. Chem. 21, 8502 (2011).

    Google Scholar 

  11. K.J. Lee, J. Yoon, J. Lahann, Curr. Opin. Colloid Interface Sci. 16, 195 (2011).

    Google Scholar 

  12. J. Lahann, Small 7, 1149 (2011).

    Google Scholar 

  13. S. Sacanna, W.T.M. Irvine, P.M. Chaikin, D.J. Pine, Nature 464, 575 (2010).

    Google Scholar 

  14. Q. Chen, J.K. Whitmer, S. Jiang, S.C. Bae, E. Luijten, S. Granick, Science 331, 199 (2011).

    Google Scholar 

  15. Q. Chen, S.C. Bae, S. Granick, Nature 469, 381 (2011).

    Google Scholar 

  16. D.C. Pregibon, M. Toner, P.S. Doyle, Science 315, 1393 (2007).

    Google Scholar 

  17. S. Sengupta, D. Eavarone, I. Capila, G. Zhao, N. Watson, T. Kiziltepe, R. Sasisekharan, Nature 436, 568 (2005).

    Google Scholar 

  18. M. Yoshida, K.-H. Roh, S. Mandal, S. Bhaskar, D.W. Lim, H. Nandivada, X.P. Deng, J. Lahann, Adv. Mater. 21, 4920 (2009).

    Google Scholar 

  19. J. Kim, S.E. Chung, S.-E. Choi, H. Lee, J. Kim, S. Kwon, Nat. Mater. 10, 747 (2011).

    Google Scholar 

  20. T. Higuchi, A. Tajima, K. Motoyoshi, H. Yabu, M. Shimomura, Angew. Chem. Int. Ed. 47, 8044 (2008).

    Google Scholar 

  21. J. Yoon, A. Kota, S. Bhaskar, A. Tuteja, J. Lahann, ACS Appl. Mater. Interfaces 5 (21), 11281 (2013).

    Google Scholar 

  22. S. Rahmani, T.-H. Park, A. Dishman, J. Lahann, J. Control. Release 172, 239 (2013).

    Google Scholar 

  23. T. Eyster, T.H. Park, A. Misra, J. Lahann, Small (2013), doi:10.1002/ sm11.201201921.

  24. A.C. Misra, S. Bhaskar, J. Lahann, Adv. Mater. 24, 3850 (2012).

    Google Scholar 

  25. A. Walther, X. Andras, M. Drechsler, V. Abetz, A.H.E. Mueller, J. Am. Chem. Soc. 129, 6187 (2007).

    Google Scholar 

  26. J.-W. Kim, R.J. Larsen, D.A. Weitz, J. Am. Chem. Soc. 128, 14374 (2006).

    Google Scholar 

  27. D.J. Kraft, J. Hilhorst, M.A.P. Heinen, M.J. Hoogenraad, B. Luigjes, W.K. Kegel, J. Phys. Chem. B 115, 7175 (2011).

    Google Scholar 

  28. J.P. Rolland, B.W. Maynor, L.E. Euliss, A.E. Exner, G.M. Denison, J.M. DeSimone, J. Am. Chem. Soc. 127, 10096 (2005).

    Google Scholar 

  29. S. Badaire, C. Cottin-Bizonne, J.W. Woody, A. Yang, A.D. Stroock, J. Am. Chem. Soc. 129, 40 (2006).

    Google Scholar 

  30. T.J. Merkel, K.P. Herlihy, J. Nunes, R.M. Orgel, J.P. Rolland, J.M. DeSimone, Langmuir 26, 13086 (2009).

    Google Scholar 

  31. T. Nisisako, T. Torii, T. Takahashi, Y. Takizawa, Adv. Mater. 18, 1152 (2006).

    Google Scholar 

  32. C.-H. Chen, A.R. Abate, D. Lee, E.M. Terentjev, D.A. Weitz, Adv. Mater. 21, 3201 (2009).

    Google Scholar 

  33. K.W. Bong, K.T. Bong, D.C. Pregibon, P.S. Doyle, Angew. Chem. Int. Ed. Engl. 49, 87 (2010).

    Google Scholar 

  34. A. Greiner, J.H. Wendorff, Angew. Chem. Int. Ed. Engl. 46, 5670 (2007).

    Google Scholar 

  35. A. Perro, S. Reculusa, S. Ravaine, E. Bourgeat-Lami, E. Duguet. J. Mater. Chem. 15, 3745 (2005).

  36. F. Wurm, A.F.M. Kilbinger, Angew. Chem. Int. Ed. Engl. 48, 8412 (2009).

    Google Scholar 

  37. S. Jiang, Q. Chen, M. Tripathy, E. Luijten, K.S. Schweizer, S. Granick, Adv. Mater. 22, 1060 (2010).

    Google Scholar 

  38. B. Pawar, I. Kretzschmar, Macromol. Rapid Commun. 31, 150 (2010).

    Google Scholar 

  39. M. Lattuada, T.A. Hatton, Nanotoday, 6, 286 (2011).

  40. J. Du, R.K. O’Reilly, Chem. Soc. Rev. 40, 2402 (2011).

    Google Scholar 

  41. W. Lv, K.J. Lee, S. Hwang, T.-H. Park, F. Zhang, J. Lahann, Part. Part. Syst. Char. (2013), doi:10.1002/ppsc.201300123.

  42. W. Lv, K.J. Lee, J. Li, T.-H. Park, S. Hwang, A.J. Hart, F. Zhang, J. Lahann, Small 8 (20), 3116 (2012).

    Google Scholar 

  43. P. Gupta, L. Wilkes, Polymer 44, 6353 (2003).

    Google Scholar 

  44. I.G. Loscertales, A. Barrero, I. Guerrero, R. Cortijo, M. Marquez, A.M. Ganan-Calvo, Science 295, 1695 (2002).

    Google Scholar 

  45. G. Larsen, R. Velarde-Ortiz, K. Minchow, A. Barrero, I.G. Loscertales, J. Am. Chem. Soc. 125, 1154 (2003).

    Google Scholar 

  46. I.G. Loscertales, A. Barrero, M. Marquez, R. Spretz, R. Velarde-Ortiz, G. Larsen, J. Am. Chem. Soc. 126, 5376 (2004).

    Google Scholar 

  47. Z. Sun, E. Zussman, A.L. Yarin, J.H. Wendorff, A. Greiner, Adv. Mater. 15, 1929 (2003).

    Google Scholar 

  48. K.-H. Roh, D.C. Martin, J. Lahann, Nat. Mater. 4, 759 (2005).

    Google Scholar 

  49. K.-H. Roh, M. Yoshida, J. Lahann, Langmuir 23, 5683 (2007).

    Google Scholar 

  50. S. Bhaskar, K.-H. Roh, X.W. Jiang, G.L. Baker, J. Lahann, Macromol. Rapid Commun. 29, 1655 (2008).

    Google Scholar 

  51. S. Mandal, S. Bhaskar, J. Lahann, Macromol. Rapid Commun. 30, 1638 (2009).

    Google Scholar 

  52. S. Bhaskar, K.M. Pollock, M. Yoshida, J. Lahann, Small 6, 404 (2010).

    Google Scholar 

  53. K.-H. Roh, D.C. Martin, J. Lahann, J. Am. Chem. Soc. 128, 6796 (2006).

    Google Scholar 

  54. N. Doshi, A. S. Zahr, S. Bhaskar, J. Lahann, S. Mitragotri, Proc. Natl. Acad. Sci. U.S.A. 106 (51), 21495 (2009).

    Google Scholar 

  55. S. Bhaskar, J. Lahann, J. Am. Chem. Soc. 131, 6650 (2009).

    Google Scholar 

  56. P. Gupta, G.L. Wilkes, Polymer 44, 6353 (2003).

    Google Scholar 

  57. K.J. Lee, S. Hwang, J. Yoon, S. Bhaskar, T.-H. Park, J. Lahann, Macromol. Rapid Commun. 32, 431 (2011).

    Google Scholar 

  58. S. Bhaskar, C.T. Gibson, M. Yoshida, H. Nandivada, X.P. Deng, N.H. Voelcker, J. Lahann, Small 7, 812 (2011).

    Google Scholar 

  59. S. Saha, D. Copic, S. Bhaskar, N. Clay, A. Donini, A.J. Hart, J. Lahann, Angew. Chem. Int. Ed. Engl. 51, 660 (2012).

    Google Scholar 

  60. K.J. Lee, T.-H. Park, S. Hwang, J. Yoon, J. Lahann, Langmuir 29 (20), 6181 (2013).

    Google Scholar 

  61. S. Bhaskar, J. Hitt, S.W.L. Chang, J. Lahann, Angew. Chem. Int. Ed. Engl. 48, 4589 (2009).

    Google Scholar 

  62. K.J. Lee, J. Yoon, S. Rahmani, S. Hwang, S. Bhaskar, S. Mitragotri, J. Lahann, Proc. Natl. Acad. Sci. U.S.A. 109, 16057 (2012).

    Google Scholar 

Download references

Acknowledgements

We acknowledge funding from the Multidisciplinary University Research Initiative of the US Department of Defense and the Army Research Office (W911NF-10–1–0518).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sahar Rahmani.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rahmani, S., Lahann, J. Recent progress with multicompartmental nanoparticles. MRS Bulletin 39, 251–257 (2014). https://doi.org/10.1557/mrs.2014.10

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/mrs.2014.10

Navigation