Skip to main content
Log in

State of the art of cyclic olefin polymers

  • Ziegler-Natta catalysis: 50 years after the Nobel Prize
  • Published:
MRS Bulletin Aims and scope Submit manuscript

Abstract

Highly active metallocenes and other single site catalysts as well as Grubbs and Schrock metathesis catalytic systems have opened up the possibility to polymerize cycloolefins or to copolymerize them with ethene or propene. The polymers obtained show exciting structures and properties. Cycloolefins such as cyclopentene, cyclooctene, norbornene, and their substituted derivatives are incorporated into the polymer chain either by double bonds or by ring-opening metathesis polymerization. Materials with elastomeric properties or tactic polymers with high glass transition temperatures and melting points are obtained with a wide range of microstructures. For example, cycloolefin copolymers and other homo- and copolymers of norbornene are of great academic and industrial interest because of their properties and applications in optoelectronics, lenses, and coatings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Scheme 3
Scheme 4
Scheme 5
Scheme 6
Scheme 7
Scheme 8

Similar content being viewed by others

References

  1. W.L. Truett, D.R. Johnson, I.M. Robinson, B.A. Montague, J. Am. Chem. Soc. 82, 2337 (1960).

    Google Scholar 

  2. G. Sartori, F.C. Ciampelli, N. Cameli, Chim. Ind. 45, 1478 (1963).

    Google Scholar 

  3. G. Natta, G. Dall’Asta, G. Mazzanti, I. Pasquon, A. Valvassori, A. Zambelli, Makromol. Chem. 54, 95 (1962).

    Google Scholar 

  4. G. Dall’Asta, G. Mazzanti, G. Natta, L. Porri, Makromol. Chem. 56, 224 (1962).

    Google Scholar 

  5. G. Natta, G. Dall’Asta, G. Mazzanti, Angew. Chem. Int. Ed. 3, 723 (1964).

    Google Scholar 

  6. K.J. Ivin, T. Saegusa, Cycloalkenes and Bicycloalkenes Ring-Opening Polymerization (Elsevier, London, 1984), vol. 1.

    Google Scholar 

  7. R.H. Grubbs, Handbook of Metathesis (Wiley-VCH: Weinheim, 2003).

    Google Scholar 

  8. W. Kaminsky, M. Arndt-Rosenau, in Metallocene-based Polyolefins, J. Scheirs, W. Kaminsky, Eds. (Wiley, Chichester, 2000), p. 91.

    Google Scholar 

  9. I. Tritto, L. Boggioni, D.R. Ferro, Coord. Chem. Rev. 250, 212 (2006).

    Google Scholar 

  10. F. Blank, C. Janiak, Coord. Chem. Rev. 253, 827 (2009).

    Google Scholar 

  11. W. Kaminsky, L. Boggioni, I. Tritto, in Polymer Science: A Comprehensive Reference, K. Matyjaszewski, M. Möller, Eds. (Elsevier B.V., The Netherlands, 2012), vol. 3, pp. 843 – 873.

    Google Scholar 

  12. W. Kaminsky, A. Bark, M. Arndt, Macromol. Symp. 47, 83 (1991).

    Google Scholar 

  13. M.R. Buchmeiser, Chem. Rev. 100, 1565 (2000).

    Google Scholar 

  14. T.M. Trnka, R.H. Grubbs, Acc.Chem. Res. 34, 18 (2001).

    Google Scholar 

  15. R.R. Schrock, Chem. Rev. 102, 14 (2002).

    Google Scholar 

  16. R.R. Schrock, Angew. Chem. Int. Ed. 45, 3748 (2006).

    Google Scholar 

  17. R.H. Grubbs, Angew. Chem. Int. Ed. 45, 3760 (2006).

    Google Scholar 

  18. C.W. Bielawski, R.H. Grubbs, Prog. Polym. Sci. 32, 1 (2007).

    Google Scholar 

  19. R.R. Schrock, Dalton Trans. 40, 7484 (2011).

    Google Scholar 

  20. B.K. Keitz, A. Fedorov, R.H. Grubbs, J. Am. Chem. Soc. 134, 2040 (2012).

    Google Scholar 

  21. W. Wang, M. Fujiki, K. Nomura, J. Am. Chem. Soc. 127, 4582 (2005).

    Google Scholar 

  22. M. Arndt, Grundlagen und Mechanismen der Polymerisation von Cycloolefinen unter Verwendung homogener Ziegler-Natta Katalysatoren (Verlag Shaker, Aachen, 1994).

    Google Scholar 

  23. M. Arndt, W. Kaminsky, Macromol. Symp. 95, 167 (1995).

    Google Scholar 

  24. M. Arndt, R. Engehausen, W. Kaminsky, K. Zoumis, J. Mol. Catal. A: Chem. 101, 171 (1995).

    Google Scholar 

  25. S. Collins, W.M. Kelly, Macromolecules 25, 233 (1992).

    Google Scholar 

  26. W.M. Kelly, N.J. Taylor, S. Collins, Macromolecules 27, 4477 (1994).

    Google Scholar 

  27. S.J. McLain, J. Feldman, E.F. McCord, K.H. Gardner, M.F. Teasley, E.B. Coughlin, K.J. Sweetman, L.K. Johnson, M. Brookhart, Macromolecules 31, 6705 (1998).

    Google Scholar 

  28. S. Rush, A. Reinmuth, W. Risse, J. O’Brien, D.R. Ferro, I. Tritto, J. Am. Chem. Soc. 118, 12230 (1996).

    Google Scholar 

  29. K. Curran, W. Risse, L. Boggioni, I. Tritto, M acromol. Chem. Phys. 2 09, 707 (2008).

    Google Scholar 

  30. A. Sen, T.-W. Lai, J. Am. Chem. Soc. 103, 4627 (1981).

    Google Scholar 

  31. C. Mehler, W. Risse, Macromolecules 25, 4226 (1992).

    Google Scholar 

  32. S. Breunig, W. Risse, Makromol. Chem. 193, 2915 (1992).

    Google Scholar 

  33. B.L. Goodall, L.H. McIntosh III, L.F. Rhodes, Macromol. Symp. 89, 421 (1995).

    Google Scholar 

  34. B.L. Goodall, G.M. Benedikt, L.H. McIntosh III, D.A. Barnes, US Patent 5,468,819 (1995).

  35. B.L. Goodall, D.A. Barnes, G.M. Benedikt, L.H. McIntosh III, L.F. Rhodes, Polym. Mater. Sci. Eng. 76, 56 (1997).

    Google Scholar 

  36. A.D. Hennis, J.D. Polley, G.S. Long, A. Sen, D. Yandulov, J. Lipian, G.M. Benedikt, L.F. Rhodes, J. Huffman, Organometallics 20, 2802 (2001).

    Google Scholar 

  37. B.L. Goodall, in Late Transition Metal Polymerization Catalysis, B. Rieger, L.S. Baugh, S. Kacker, S. Striegler, Eds. (Wiley-VCH, Weinheim, 2003), p. 101.

    Google Scholar 

  38. www.promerus.com.

  39. W. Kaminsky, A. Bark, M. Arndt, Makromol. Chem. Macromol. Symp. 47, 83 (1991).

    Google Scholar 

  40. W. Kaminsky, O. Sperber, R. Werner, Coord. Chem. Rev. 250, 110 (2006).

    Google Scholar 

  41. A. Jerschow, E. Ernst, W. Hermann, N. Müller, Macromolecules 28, 7095 (1995).

    Google Scholar 

  42. N. Naga, Y. Imanishi, Macromol. Chem. Phys. 203, 159 (2002).

    Google Scholar 

  43. N. Naga, Y. Imanishi, Polymer 43, 2133 (2002).

    Google Scholar 

  44. M. Fujita, G.W. Coates, Macromolecules 35, 9640 (2002).

    Google Scholar 

  45. A.R. Lavoie, M.H. How, R.M. Waymouth, Chem. Commun. 864 (2003).

  46. A.R. Lavoie, R.M. Waymouth, Tetrahedron 60, 7147 (2004).

    Google Scholar 

  47. X. Li, Z.M. Hou, Coord. Chem. Rev. 252, 1842 (2008).

    Google Scholar 

  48. D. Ruchatz, G. Fink, Macromolecules 31, 4674 (1998).

    Google Scholar 

  49. D. Ruchatz, G. Fink, Macromolecules 31, 4681 (1998).

    Google Scholar 

  50. B.A. Harrington, D.J. Crowther, J. Mol. Catal. A: Chem. 128, 79 (1998).

    Google Scholar 

  51. A.L. McKnight, R.M. Waymouth, Macromolecules 32, 2816 (1999).

    Google Scholar 

  52. B.Y. Lee, Y.H. Kim, Y.C. Won, J.W. Han, W.H. Suh, I.S. Lee, Y.K. Chung, K.H. Song, Organometallics 21, 1500 (2002).

    Google Scholar 

  53. G.J. Domski, J.M. Rose, G.W. Coates, A.D. Bolig, M. Brookhart, Prog. Polym. Sci. 32, 30 (2007).

    Google Scholar 

  54. J.C. Jansen, R. Mendichi, P. Locatelli, I. Tritto, Macromol. Rapid Commun. 22, 1394 (2001).

    Google Scholar 

  55. N.N. Bhriain, H.H. Brintzinger, D. Ruchatz, G. Fink, Macromolecules 38, 2056 (2005).

    Google Scholar 

  56. K. Thorshaug, R. Mendichi, L. Boggioni, I. Tritto, S. Trinkle, C. Friedrich, R. Mülhaupt, Macromolecules 35, 2903 (2002).

    Google Scholar 

  57. R. Marconi, A. Ravasio, L. Boggioni, I. Tritto, Macromol. Rapid Commun. 30, 39 (2008).

    Google Scholar 

  58. T. Hasan, T. Shiono, T. Ikeda, Macromolecules 23, 8503 (2004).

    Google Scholar 

  59. T. Shiono, Polym. J. 43, 331 (2011), and references therein.

    Google Scholar 

  60. Y. Yoshida, S. Matsui, T. Fujita, J. Organomet. Chem. 690, 4382 (2005).

    Google Scholar 

  61. K. Nomura, Dalton Trans. 41, 8811 (2009), and references therein.

    Google Scholar 

  62. S. Matsui, Y. Yoshida, Y. Takagi, T.P. Spaniol, J.J. Okuda, Organomet. Chem. 689, 1155 (2004).

    Google Scholar 

  63. C.H. Bergstrom, J.V. Seppala, J. Polym. Sci., Part A: Polym. Chem. 63, 1063 (1997).

    Google Scholar 

  64. I. Tritto, L. Boggioni, M.C. Sacchi, P. Locatelli, Macromol. Chem. Phys. 279 (1999).

  65. I. Tritto, C. Marestin, L. Boggioni, L. Zetta, A. Provasoli, D.R. Ferro, Macromolecules 33, 8931 (2000).

    Google Scholar 

  66. R.A. Wendt, G. Fink, Macromol. Chem. Phys. 202, 3490 (2001).

    Google Scholar 

  67. A. Provasoli, D.R. Ferro, I. Tritto, L. Boggioni, Macromolecules 32, 6697 (1999).

    Google Scholar 

  68. Z. Hou, Y. Luo, X. Li, J. Organomet. Chem. 691, 2734 (2006).

    Google Scholar 

  69. X. Li, J. Baldamus, Z. Hou, Angew. Chem. Int. Ed. 44, 962 (2005).

    Google Scholar 

  70. A. Ravasio, C. Zampa, L. Boggioni, I. Tritto, J. Hitzbleck, J. Okuda, Macromolecules 41, 9565 (2008).

    Google Scholar 

  71. T.R. Younkin, E.F. Connor, J.I. Henderson, S.K. Friedrich, R.H. Grubbs, D.A. Bansleben, Science 287, 460 (2000).

    Google Scholar 

  72. J. Kiesewetter, W. Kaminsky, Chem. Eur. J. 9, 1750 (2003).

    Google Scholar 

  73. J. Kiesewetter, B. Arikan, W. Kaminsky, Polymer 47, 3302 (2006).

    Google Scholar 

  74. F.M. Bauers, S. Mecking, Macromolecules 34, 1165 (2001).

    Google Scholar 

  75. E.F. Connor, T.R. Younkin, J.I. Henderson, S.J. Hwang, R.H. Grubbs, W.P. Roberts, J.J. Litzau, J. Polym. Sci., Part A: Polym. Chem. 40, 2842 (2002).

    Google Scholar 

  76. S. Sujith, D.J. Joe, S.J. Na, Y.-W. Park, C.H. Choi, B.Y. Lee, Macromolecules 38, 10027 (2005).

    Google Scholar 

  77. P. Wehrmann, M. Zuideveld, R. Thomann, S. Mecking, Macromolecules 39, 5995 (2006).

    Google Scholar 

  78. G.M. Benedikt, E. Elce, B.L. Goodall, H.A. Kalamarides, L.H. McIntosh, L.F. Rhodes, K.T. Selvy, C. Andes, K. Oyler, A. Sen, Macromolecules 35, 8978 (2002).

    Google Scholar 

  79. K.M. Skupov, P.R. Marella, J.L. Hobbs, L.H. McIntosh, B.L. Goodall, J.P. Claverie, Macromolecules 39, 4279 (2006).

    Google Scholar 

  80. S. Liu, S. Borkar, D. Newsham, H. Yennawar, A. Sen, Organometallics 26, 210 (2007).

    Google Scholar 

  81. A. Ravasio, L. Boggioni, I. Tritto, Macromolecules 44, 4180 (2011).

    Google Scholar 

  82. S.J. Diamanti, P. Ghosh, F. Shimizu, G.C. Bazan, Macromolecules, 36, 9731 (2003).

    Google Scholar 

  83. S.J. Diamanti, V. Kanna, A. Hotta, D. Yamakava, F. Shimizu, E.J. Kramer, G.H. Fredrikson, G.C. Bazan, J. Am. Chem. Soc. 126, 10528 (2004).

    Google Scholar 

  84. R.C. Coffin, S.J. Diamanti, A. Hotta, V. Khanna, E.J. Kramer, G.H. Fredrickson, G.C. Bazan, Chem. Commun. 3550 (2007).

  85. Y. Yoshida, J. Mohri, S. Ishii, M. Mitani, J. Saito, S. Matsui, H. Makio, T. Nakano, H. Tanaka, M. Onda, Y. Yamamoto, A. Mizuno, T. Fujita, J. Am. Chem. Soc. 126, 12023 (2004).

    Google Scholar 

  86. A. Ravasio, L. Boggioni, F. Bertini, I. Tritto, J. Polym. Sci., Part A: Polym. Chem. 50, 867 (2012).

    Google Scholar 

  87. O. Henschke, F. Köller, M. Arnold, Makromol. Rapid Commun. 18, 617 (1997).

    Google Scholar 

  88. L. Boggioni, F. Bertini, G. Zannoni, I. Tritto, P. Carbone, M. Ragazzi, D.R. Ferro, Macromolecules 36, 882 (2003).

    Google Scholar 

  89. P. Carbone, M. Ragazzi, I. Tritto, L. Boggioni, D.R. Ferro, Macromolecules 36, 891 (2003).

    Google Scholar 

  90. W. Kaminsky, S. Derlin, M. Hoff, Polymer 48, 7271 (2007).

    Google Scholar 

  91. C. Zampa, A. Ravasio, I. Tritto, D.R. Ferro, Macromolecules 41, 5107 (2008).

    Google Scholar 

  92. L. Boggioni, A. Ravasio, C. Zampa, D.R. Ferro, I. Tritto, Macromolecules 43, 4532 (2010).

    Google Scholar 

  93. L. Boggioni, A. Ravasio, A.C. Boccia, D.R. Ferro, I. Tritto, Macromolecules 43, 4543 (2010).

    Google Scholar 

  94. T. Hasan, T. Ikeda, T. Shiono, Macromolecules 38, 1071 (2005).

    Google Scholar 

  95. W. Kaminsky, A. Bark, Polym. Int. 2, 251 (1992).

    Google Scholar 

  96. W. Kaminsky, I. Beulich, M. Arndt-Rosenau, Macromol. Symp. 173, 211 (2001).

    Google Scholar 

  97. V.N. Dougnac, R. Quijada, H. Palza, G.B. Galland, Eur. Polym. J. 45, 102 (2009).

    Google Scholar 

  98. D.-H. Lee, K.-B. Yoon, J.-R. Park, B.-H. Lee, Eur. Polym. J. 33, 447 (1997).

    Google Scholar 

  99. N.J. Naga, J. Polym. Sci., Part A: Polym. Chem. 43, 1285 (2005).

    Google Scholar 

  100. A.G. Simanke, R.S. Mauler, G.B. Galland, J. Polym. Sci., Part A: Polym. Chem. 40, 471 (2002).

    Google Scholar 

  101. J. Suzuki, Y. Kino, T. Uozumi, T. Sano, T. Teranishi, J. Jin, K. Soga, T. Shiono, J. Appl. Polym. Sci. 72, 103 (1999).

    Google Scholar 

  102. X.F. Li, Z.M. Hou, Macromolecules 38, 6767 (2005).

    Google Scholar 

  103. D.J. Cho, C.J. Wu, S. Sujith, W.-S. Han, S.O. Kang, B.Y. Lee, Organometallics 25, 2133 (2006).

    Google Scholar 

  104. S.J. Na, C.J. Wu, J. Yoo, B.E. Kim, B.Y. Lee, Macromolecules 41, 4055 (2008).

    Google Scholar 

  105. S.T. Yu, S.J. Na, T.S. Lim, B.Y. Lee, Macromolecules 43, 725 (2010).

    Google Scholar 

  106. M. Hong, L. Cui, S. Liu, Y. Li, Macromolecules 45, 5397 (2012).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Laura Boggioni.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Boggioni, L., Tritto, I. State of the art of cyclic olefin polymers. MRS Bulletin 38, 245–251 (2013). https://doi.org/10.1557/mrs.2013.53

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/mrs.2013.53

Navigation