Skip to main content
Log in

Transition metal-catalyzed polymerization of polar allyl and diallyl monomers

  • Ziegler-Natta catalysis: 50 years after the Nobel Prize
  • Published:
MRS Bulletin Aims and scope Submit manuscript

Abstract

Recent advances in polymerization of allyl and diallyl monomers catalyzed by homogeneous Ziegler-Natta catalysts are reviewed. Zirconocene catalysts are effective for copolymerization of ethylene or propylene with Al-masked allyl monomers, as well as homopolymerization of allylsilanes. Phosphine-sulfonate Pd complexes promote the copolymerization of ethylene with various polar allyl monomers, in the absence of a masking agent. Late transition metal catalysts promote stereoselective cyclopolymerization of diallyl monomers having various polar functional groups. The cyclopolymerization of alkyl-substituted diallyl monomers by Pd diimine complexes affords the polymer having alternating oligomethylene and trans-1,2-cyclopentene groups.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Scheme 3
Scheme 4
Scheme 5
Scheme 6
Scheme 7
Scheme 8

Similar content being viewed by others

References

  1. E.Y.-X. Chen, J. Polym. Sci., Part A: Polym. Chem. 42, 3395 (2004).

    Google Scholar 

  2. E.Y.-X. Chen, Chem. Rev. 109, 5157 (2009).

    Google Scholar 

  3. L.S. Boffa, B.M. Novak, Chem. Rev. 100, 1479 (2000).

    Google Scholar 

  4. M.J. Yanjarappa, S. Sivaram, Prog. Polym. Sci. 27, 1347 (2002).

    Google Scholar 

  5. A. Sen, S. Borkar, J. Organomet. Chem. 692, 3291 (2007).

    Google Scholar 

  6. A. Berkefeld, S. Mecking, Angew. Chem. Int. Ed. 47, 2538 (2008).

    Google Scholar 

  7. A. Nakamura, S. Ito, K. Nozaki, Chem. Rev. 109, 5215 (2009).

    Google Scholar 

  8. J. Tsuji, Palladium Reagents and Catalysts (Wiley, Chichester, UK, 1995).

    Google Scholar 

  9. D. Schinzer, Synthesis 263 (1988).

  10. K.P. Arit, R. Binsack, U. Grogo, D. Neuray, US Patent 4423196 (1983).

  11. J. Imuta, N. Kashiwa, Y. Toda, J. Am. Chem. Soc. 124, 1176 (2002).

    Google Scholar 

  12. N. Kashiwa, T. Matsugi, S. Kojoh, H. Kaneko, N. Kawahara, S. Matsuo, T. Nobori, J. Imuta, J. Polym. Sci., Part A: Polym. Chem. 41, 3657 (2003).

    Google Scholar 

  13. J. Imuta, Y. Toda, T. Matsugi, H. Kaneko, S. Matsuo, S. Kojoh, N. Kashiwa, Chem. Lett. 32, 656 (2003).

    Google Scholar 

  14. H. Hagihara, K. Tsuchihara, J. Sugiyama, K. Takeuchi, T. Shiono, Macromolecules 37, 5145 (2004).

    Google Scholar 

  15. W. Li, X. Zhang, A. Meetsma, B. Hessen, J. Am. Chem. Soc. 126, 12246 (2004).

    Google Scholar 

  16. W. Li, X. Zhang, A. Meetsma, B. Hessen, Organometallics 27, 2052 (2008).

    Google Scholar 

  17. S. Ito, M. Kanazawa, K. Munakata, J. Kuroda, Y. Okumura, K. Nozaki, J. Am. Chem. Soc. 133, 1232 (2011).

    Google Scholar 

  18. J.-C. Daigle, L. Piche, A. Arnold, J.P. Claverie, ACS Macro Lett. 1, 343 (2012).

    Google Scholar 

  19. K. Tamao, Adv. Silicon Chem. 3, 1, (1996).

    Google Scholar 

  20. R. Ziegler, L. Resconi, G. Balbontin, G. Guerra, V. Venditto, C. De Rosa, Polymer 35, 4648 (1994).

    Google Scholar 

  21. S. Habaue, H. Baraki, Y. Okamoto, Macromol. Chem. Phys. 199, 2211 (1998).

    Google Scholar 

  22. S.H. Lipponen, J.V. Seppälä, Organometallics 30, 528 (2011).

    Google Scholar 

  23. J. Liu, K. Nomura, Macromolecules 41, 1070 (2008).

    Google Scholar 

  24. S.B. Amin, T.J. Marks, J. Am. Chem. Soc. 129, 2938 (2007).

    Google Scholar 

  25. N. Naga, Macromol. Chem. Phys. 206, 1959 (2005).

    Google Scholar 

  26. N. Naga, J. Polym. Sci., Part A: Polym. Chem. 44, 6083 (2006).

    Google Scholar 

  27. G.W. Coates, R.M. Waymouth, J. Mol. Catal. 76, 189 (1992).

    Google Scholar 

  28. J.B. Edson, G.W. Coates, Macromol. Rapid Commun. 30, 1900 (2009).

    Google Scholar 

  29. M.R. Kesti, G.W. Coates, R.M. Waymouth, J. Am. Chem. Soc. 114, 9679 (1992).

    Google Scholar 

  30. D. Takeuchi, R. Matsuura, S. Park, K. Osakada, J. Am. Chem. Soc. 129, 7002 (2007).

    Google Scholar 

  31. D. Takeuchi, R. Matsuura, Y. Fukuda, K. Osakada, Dalton Trans. 41, 8955 (2009).

    Google Scholar 

  32. S. Park, D. Takeuchi, K. Osakada, J. Am. Chem. Soc. 128, 3510 (2006).

    Google Scholar 

  33. S. Park, T. Okada, D. Takeuchi, K. Osakada, Chem. Eur. J. 16, 8662 (2010).

    Google Scholar 

  34. D. Takeuchi, Macromol. Chem. Phys. 212, 1545 (2011).

    Google Scholar 

  35. Y. Ie, A. Yoshimura, D. Takeuchi, K. Osakada, Y. Aso, Chem. Lett. 40, 1039 (2011).

    Google Scholar 

  36. Y. Miyamura, K. Kinbara, Y. Yamamoto, V.K. Praveen, K. Kato, M. Takata, A. Takano, Y. Matsushita, E. Lee, M. Lee, T. Aida, J. Am. Chem. Soc. 132, 3292 (2010).

    Google Scholar 

  37. Y. Miyamura, C. Park, K. Kinbara, F.A. Leibfarth, C.J. Hawker, T. Aida, J. Am. Chem. Soc. 133, 2840 (2011).

    Google Scholar 

  38. P. Xiang, Z. Ye, S. Morgan, X. Xia, W. Liu, Macromolecules 42, 4946 (2009).

    Google Scholar 

  39. K. Motokuni, T. Okada, D. Takeuchi, K. Osakada, Macromolecules 44, 751 (2011).

    Google Scholar 

  40. T. Okada, S. Park, D. Takeuchi, K. Osakada, Angew. Chem. Int. Ed. 46, 6141 (2007).

    Google Scholar 

  41. T. Okada, D. Takeuchi, K. Osakada, Macromolecules 43, 7998 (2010).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daisuke Takeuchi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Takeuchi, D. Transition metal-catalyzed polymerization of polar allyl and diallyl monomers. MRS Bulletin 38, 252–259 (2013). https://doi.org/10.1557/mrs.2013.51

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/mrs.2013.51

Navigation