Skip to main content
Log in

Functionalization of aliphatic polyketones

  • Ziegler-Natta catalysis: 50 years after the Nobel Prize
  • Published:
MRS Bulletin Aims and scope Submit manuscript

Abstract

Although aliphatic polyketones built from carbon monoxide and olefins have not yet found widespread application in industry and everyday life, this material has great potential, as its properties can be tuned, almost boundlessly, to desired traits or values. For example, the melting temperature and the phase transition temperatures can be varied largely, therefore making it possible to design a polymeric material with adjustable properties. Regardless of its feasibility for replacing common commodity polymers such as polypropylene or polyethylene in some special utilization areas, we want to highlight some aspects for the great potential of aliphatic polyketones as a functional material in drug delivery, bioengineering, optical devices, and other applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Scheme 3
Scheme 4
Scheme 5
Scheme 6
Scheme 7
Scheme 8
Scheme 9
Scheme 10
Scheme 11
Scheme 12
Scheme 13
Scheme 14
Scheme 15
Scheme 16

Similar content being viewed by others

References

  1. A. Sommazzi, F. Garbassi, Prog. Polym. Sci. 22, 1547 (1997).

    Google Scholar 

  2. B.J. Lommerts, E.A. Klop, J. Aerts, J. Polym. Sci., Part B: Polym. Phys. 31, 1319 (1993).

    Google Scholar 

  3. N.M.A. Del, G. Mensitieri, L. Nicolais, A. Sommazzi, F. Garbassi, J. Appl. Polym. Sci. 50, 1261 (1993).

    Google Scholar 

  4. A. Sen, Adv. Polym. Sci. 7374, 125 (1986).

    Google Scholar 

  5. A. Sen, Acc. Chem. Res. 26, 303 (1993).

    Google Scholar 

  6. M.M. Brubaker, D.D. Coffman, H.H. Hoehn, J. Am. Chem. Soc. 74, 1509 (1952).

    Google Scholar 

  7. Shell, Carilon Thermoplastic Polymers, Information Sheet (1994).

  8. Eur. Plast. News 57 (October 1995).

  9. C. Bianchini, A. Meli, Coord. Chem. Rev. 225, 35 (2002).

    Google Scholar 

  10. E. Drent, B.J.A.M. Van Broekhoven, M.J. Doyle, J. Organomet. Chem. 417, 235 (1991).

    Google Scholar 

  11. A.K. Hearley, R.J. Nowack, B. Rieger, Organometallics 24, 2755 (2005).

    Google Scholar 

  12. A.S. Abu-Surrah, R. Wursche, B. Rieger, Macromol. Chem. Phys. 198, 1197 (1997).

    Google Scholar 

  13. R.P. Nieuwhof, A.T.M. Marcelis, E.J.R. Sudholter, R. Wursche, B. Rieger, Macromol. Chem. Phys. 201, 2484 (2000).

    Google Scholar 

  14. K. Nozaki, Y. Kawashima, T. Oda, T. Hiyama, K. Kanie, T. Kato, Macromolecules 35, 1140 (2002).

    Google Scholar 

  15. Y. Kawashima, K. Nozaki, T. Hiyama, M. Yoshio, K. Kanie, T. Kato, J. Polym. Sci., Part A: Polym. Chem. 41, 3556 (2003).

    Google Scholar 

  16. P. Reuter, R. Fuhrmann, A. Mucke, J. Voegele, B. Rieger, R.P. Franke, Macromol. Biosci. 3, 123 (2003).

    Google Scholar 

  17. W. Rohlke, R. Fuhrmann, R.P. Franke, A. Mucke, J. Voegele, B. Rieger, Macromol. Biosci. 3, 131 (2003).

    Google Scholar 

  18. V. Malinova, B. Rieger, Macromol. Rapid Commun. 26, 945 (2005).

    Google Scholar 

  19. V. Malinova, B. Rieger, Biomacromolecules 7, 2931 (2006).

    Google Scholar 

  20. G.C. Bartsch Jr., V. Malinova, B.E. Volkmer, R.E. Hautmann, B. Rieger, BJU Int. 99, 447 (2007).

    Google Scholar 

  21. Z. Jiang, A. Sen, J. Am. Chem. Soc. 117, 4455 (1995).

    Google Scholar 

  22. S. Kacker, Z. Jiang, A. Sen, Macromolecules 29, 5852 (1996).

    Google Scholar 

  23. R. Wursche, B. Rieger, Macromol. Chem. Phys. 201, 2861 (2000).

    Google Scholar 

  24. R. Wursche, B. Rieger, Macromol. Chem. Phys. 201, 2869 (2000).

    Google Scholar 

  25. S. Di Benedetto, G. Consiglio, Helv. Chim. Acta 80, 2204 (1997).

    Google Scholar 

  26. T. Fujita, K. Nakano, M. Yamashita, K. Nozaki, J. Am. Chem. Soc. 128, 1968 (2006).

    Google Scholar 

  27. J.T. Lee, H. Alper, Chem. Comm. 2189 (2000).

  28. H.-A. Klok, P. Eibeck, M. Schmid, A.S. Abu-Surrah, M. Möller, B. Rieger, Macromol. Chem. Phys. 198, 2759 (1997).

    Google Scholar 

  29. A. Mücke, B. Rieger, Macromolecules 35, 2865 (2002).

    Google Scholar 

  30. A. Sen, Chemtech 16, 48 (1986).

    Google Scholar 

  31. Z. Jiang, S. Sanganeria, A. Sen, J. Polym. Sci., Part A: Polym. Chem. 32, 841 (1994).

    Google Scholar 

  32. B.S. Pedersen, S. Scheibye, N.H. Nilsson, S.O. Lawesson, Bull. Soc. Chim. Belg. 87, 223 (1978).

    Google Scholar 

  33. D. Pérez-Foullerat, S. Hild, A. Mücke, B. Rieger, Macromol. Chem. Phys. 205, 374 (2004).

    Google Scholar 

  34. C. Cheng, D. Guironnet, J. Barborak, M. Brookhart, J. Am. Chem. Soc. 133, 9658 (2011).

    Google Scholar 

  35. M.J. Green, A.R. Lucy, S.-Y. Lu, R.M. Paton, J. Chem. Soc., Chem. Commun. 2063 (1994).

  36. S.-Y. Lu, R.M. Paton, M.J. Green, A.R. Lucy, Eur. Polym. J. 32, 1285 (1996).

    Google Scholar 

  37. Y. Zhang, A.A. Broekhuis, M.C.A. Stuart, F. Picchioni, J. Appl. Polym. Sci. 107, 262 (2008).

    Google Scholar 

  38. Y. Zhang, A.A. Broekhuis, F. Picchioni, Macromolecules 42, 1906 (2009).

    Google Scholar 

  39. C. Toncelli, D.C. De Reus, F. Picchioni, A.A. Broekhuis, Macromol. Chem. Phys. 213, 157 (2012).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Philip C. Zehetmaier.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zehetmaier, P.C., Vagin, S.I. & Rieger, B. Functionalization of aliphatic polyketones. MRS Bulletin 38, 239–244 (2013). https://doi.org/10.1557/mrs.2013.49

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/mrs.2013.49

Navigation